Limits...
Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis

View Article: PubMed Central - PubMed

ABSTRACT

Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC) gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA) at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX) plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-day-old TaNAC2D-OX plants grown in soil and up-regulated in 14-day-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D’s function.

No MeSH data available.


Related in: MedlinePlus

Transactivation activity and subcellular localization of TaNAC2D.(A) Transactivation activity of TaNAC2D in yeast strain AH109. Full-length and truncated versions of TaNAC2D were fused into pGBKT7 vector and the transformants were screened on the SD/-Trp-Ade-His plates with or without X-α-gal. (B) Subcellular localization of TaNAC2D. The fusion protein pMD18-35S-TaNAC2D-GFP and pMD18-35S-GFP (control) were transiently expressed in wheat mesophyll protoplasts and observed with fluorescence microscope.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120104&req=5

Figure 1: Transactivation activity and subcellular localization of TaNAC2D.(A) Transactivation activity of TaNAC2D in yeast strain AH109. Full-length and truncated versions of TaNAC2D were fused into pGBKT7 vector and the transformants were screened on the SD/-Trp-Ade-His plates with or without X-α-gal. (B) Subcellular localization of TaNAC2D. The fusion protein pMD18-35S-TaNAC2D-GFP and pMD18-35S-GFP (control) were transiently expressed in wheat mesophyll protoplasts and observed with fluorescence microscope.

Mentions: TaNAC2D contains a NAM domain at N-terminus (amino acids 1∼172) with five subdomains (A–E) and a transcriptional regulatory domain at C-terminus (amino acids 173∼327; Supplementary Figure S1A). Transactivation assays demonstrated that TaNAC2D had transactivation activity, and the C-terminus region was enough to activate expression of reporter genes in yeast (Figure 1A). TaNAC2D-GFP fusion protein and DAPI were detected only in the nucleus of wheat mesophyll protoplasts (Figure 1B). These results indicate that TaNAC2D may function as a transcription factor. Additionally, the result of PONDR VL3 analysis showed that a largely ID region located in C-terminus of TaNAC2D (Supplementary Figure S1B), suggesting that the protein was a mostly non-folded conformation at its C-terminus.


Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis
Transactivation activity and subcellular localization of TaNAC2D.(A) Transactivation activity of TaNAC2D in yeast strain AH109. Full-length and truncated versions of TaNAC2D were fused into pGBKT7 vector and the transformants were screened on the SD/-Trp-Ade-His plates with or without X-α-gal. (B) Subcellular localization of TaNAC2D. The fusion protein pMD18-35S-TaNAC2D-GFP and pMD18-35S-GFP (control) were transiently expressed in wheat mesophyll protoplasts and observed with fluorescence microscope.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120104&req=5

Figure 1: Transactivation activity and subcellular localization of TaNAC2D.(A) Transactivation activity of TaNAC2D in yeast strain AH109. Full-length and truncated versions of TaNAC2D were fused into pGBKT7 vector and the transformants were screened on the SD/-Trp-Ade-His plates with or without X-α-gal. (B) Subcellular localization of TaNAC2D. The fusion protein pMD18-35S-TaNAC2D-GFP and pMD18-35S-GFP (control) were transiently expressed in wheat mesophyll protoplasts and observed with fluorescence microscope.
Mentions: TaNAC2D contains a NAM domain at N-terminus (amino acids 1∼172) with five subdomains (A–E) and a transcriptional regulatory domain at C-terminus (amino acids 173∼327; Supplementary Figure S1A). Transactivation assays demonstrated that TaNAC2D had transactivation activity, and the C-terminus region was enough to activate expression of reporter genes in yeast (Figure 1A). TaNAC2D-GFP fusion protein and DAPI were detected only in the nucleus of wheat mesophyll protoplasts (Figure 1B). These results indicate that TaNAC2D may function as a transcription factor. Additionally, the result of PONDR VL3 analysis showed that a largely ID region located in C-terminus of TaNAC2D (Supplementary Figure S1B), suggesting that the protein was a mostly non-folded conformation at its C-terminus.

View Article: PubMed Central - PubMed

ABSTRACT

Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC) gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA) at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX) plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-day-old TaNAC2D-OX plants grown in soil and up-regulated in 14-day-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D’s function.

No MeSH data available.


Related in: MedlinePlus