Limits...
Quantitative fluorescent polymerase chain reaction for rapid prenatal diagnosis of fetal aneuploidies in chorionic villus sampling in a single institution

View Article: PubMed Central - PubMed

ABSTRACT

Objective: To validate quantitative fluorescent polymerase chain reaction (QF-PCR) via chorionic villus sampling (CVS) for the diagnosis of fetal aneuploidies.

Methods: We retrospectively reviewed the medical records of consecutive pregnant women who had undergone CVS at Cheil General Hospital between December 2009 and June 2014. Only cases with reported QF-PCR before long-term culture (LTC) for conventional cytogenetic analysis were included, and the results of these two methods were compared.

Results: A total of 383 pregnant women underwent QF-PCR and LTC via CVS during the study period and 403 CVS specimens were collected. The indications of CVS were as follows: abnormal first-trimester ultrasonographic findings, including increased fetal nuchal translucency (85.1%), advanced maternal age (6.8%), previous history of fetal anomalies (4.2%), and positive dual test results for trisomy 21 (3.9%). The results of QF-PCR via CVS were as follows: 76 (18.9%) cases were identified as trisomy 21 (36 cases), 18 (33 cases), or 13 (seven cases), and 4 (1.0%) cases were suspected to be mosaicism. All results of common autosomal trisomies by QF-PCR were consistent with those of LTC and there were no false-positive findings. Four cases suspected as mosaicism in QF-PCR were confirmed as non-mosaic trisomies of trisomy 21 (one case) or trisomy 18 (three cases) in LTC.

Conclusion: QF-PCR via CVS has the advantage of rapid prenatal screening at an earlier stage of pregnancy for common chromosomal trisomies and thus can reduce the anxiety of parents. In particular, it can be helpful for pregnant women with increased fetal nuchal translucency or abnormal first-trimester ultrasonographic findings.

No MeSH data available.


Related in: MedlinePlus

Positive quantitative fluorescent polymerase chain reaction results with extra short tandem repeat markers in 47,XY,+21: Trisomy 21 is identified by a trisomic diallelic pattern for D21S1008, D21S1412, and D21S1437 (≤0.6 or ≥1.8) (arrow) and a trisomic triallelic pattern for D21S1411 and D21S1435 (ratio 1:1:1) (arrow head). D, DNA; S, Segment; ar,area; ht, height; sz, size.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120063&req=5

Figure 3: Positive quantitative fluorescent polymerase chain reaction results with extra short tandem repeat markers in 47,XY,+21: Trisomy 21 is identified by a trisomic diallelic pattern for D21S1008, D21S1412, and D21S1437 (≤0.6 or ≥1.8) (arrow) and a trisomic triallelic pattern for D21S1411 and D21S1435 (ratio 1:1:1) (arrow head). D, DNA; S, Segment; ar,area; ht, height; sz, size.

Mentions: The amplified DNA samples were separated by electrophoresis using an ABI 3130xl Genetic Analyzer, and DNA representing each allele for a specific marker was quantified by its peak using GeneMapper Software ver. 4.0 (Applied Biosystems, Foster City, CA, USA). The interpretation was performed as follows: peak height ratios of allele dosage between 0.8 and 1.4 on at least two informative markers, were defined as normal and reported as negative. Markers with allele ratios between 1.4 and 1.8 or single peaks were interpreted as uninformative (Fig. 1). The presence of three alleles with an equal peak height ratio (Fig. 2) or with a ratio of ≤0.6 or ≥1.8 was considered a trisomy and was reported as positive (Fig. 3). In our center, we considered positive and uninformative QF-PCR findings as abnormal results, and recommended further confirmation by LTC in such cases. We report the common autosomal trisomies (chromosomes 13, 18, and 21) but have not officially reported abnormalities regarding sex chromosomes determined by QF-PCR assay, waiting for LTC.


Quantitative fluorescent polymerase chain reaction for rapid prenatal diagnosis of fetal aneuploidies in chorionic villus sampling in a single institution
Positive quantitative fluorescent polymerase chain reaction results with extra short tandem repeat markers in 47,XY,+21: Trisomy 21 is identified by a trisomic diallelic pattern for D21S1008, D21S1412, and D21S1437 (≤0.6 or ≥1.8) (arrow) and a trisomic triallelic pattern for D21S1411 and D21S1435 (ratio 1:1:1) (arrow head). D, DNA; S, Segment; ar,area; ht, height; sz, size.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120063&req=5

Figure 3: Positive quantitative fluorescent polymerase chain reaction results with extra short tandem repeat markers in 47,XY,+21: Trisomy 21 is identified by a trisomic diallelic pattern for D21S1008, D21S1412, and D21S1437 (≤0.6 or ≥1.8) (arrow) and a trisomic triallelic pattern for D21S1411 and D21S1435 (ratio 1:1:1) (arrow head). D, DNA; S, Segment; ar,area; ht, height; sz, size.
Mentions: The amplified DNA samples were separated by electrophoresis using an ABI 3130xl Genetic Analyzer, and DNA representing each allele for a specific marker was quantified by its peak using GeneMapper Software ver. 4.0 (Applied Biosystems, Foster City, CA, USA). The interpretation was performed as follows: peak height ratios of allele dosage between 0.8 and 1.4 on at least two informative markers, were defined as normal and reported as negative. Markers with allele ratios between 1.4 and 1.8 or single peaks were interpreted as uninformative (Fig. 1). The presence of three alleles with an equal peak height ratio (Fig. 2) or with a ratio of ≤0.6 or ≥1.8 was considered a trisomy and was reported as positive (Fig. 3). In our center, we considered positive and uninformative QF-PCR findings as abnormal results, and recommended further confirmation by LTC in such cases. We report the common autosomal trisomies (chromosomes 13, 18, and 21) but have not officially reported abnormalities regarding sex chromosomes determined by QF-PCR assay, waiting for LTC.

View Article: PubMed Central - PubMed

ABSTRACT

Objective: To validate quantitative fluorescent polymerase chain reaction (QF-PCR) via chorionic villus sampling (CVS) for the diagnosis of fetal aneuploidies.

Methods: We retrospectively reviewed the medical records of consecutive pregnant women who had undergone CVS at Cheil General Hospital between December 2009 and June 2014. Only cases with reported QF-PCR before long-term culture (LTC) for conventional cytogenetic analysis were included, and the results of these two methods were compared.

Results: A total of 383 pregnant women underwent QF-PCR and LTC via CVS during the study period and 403 CVS specimens were collected. The indications of CVS were as follows: abnormal first-trimester ultrasonographic findings, including increased fetal nuchal translucency (85.1%), advanced maternal age (6.8%), previous history of fetal anomalies (4.2%), and positive dual test results for trisomy 21 (3.9%). The results of QF-PCR via CVS were as follows: 76 (18.9%) cases were identified as trisomy 21 (36 cases), 18 (33 cases), or 13 (seven cases), and 4 (1.0%) cases were suspected to be mosaicism. All results of common autosomal trisomies by QF-PCR were consistent with those of LTC and there were no false-positive findings. Four cases suspected as mosaicism in QF-PCR were confirmed as non-mosaic trisomies of trisomy 21 (one case) or trisomy 18 (three cases) in LTC.

Conclusion: QF-PCR via CVS has the advantage of rapid prenatal screening at an earlier stage of pregnancy for common chromosomal trisomies and thus can reduce the anxiety of parents. In particular, it can be helpful for pregnant women with increased fetal nuchal translucency or abnormal first-trimester ultrasonographic findings.

No MeSH data available.


Related in: MedlinePlus