Limits...
Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

View Article: PubMed Central - PubMed

ABSTRACT

Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films.

No MeSH data available.


Acetylation of protein chains, adapted from [215].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037656&req=5

ijms-17-01376-f003: Acetylation of protein chains, adapted from [215].

Mentions: Acetic anhydrides are used for the acetylation of proteins (Figure 3). This leads to covalent bonding of acetyl groups with the amino groups of the protein. Due to the fact that oppositely charged amino acid side chains attract each other, a reduction in the number of amino groups leads to partial unfolding of the protein backbone [207] Thereby, for example, the gel strength and water binding capacity of soy protein isolate (SPI) decrease. The solubility in the pH range from 4.5 to 7 becomes greater [216]. However, Franzen et al. [217] found that acetylation only has a minor effect on the functional properties of soy protein. Compared to the effect of succinylation, the effect of acetylation on the protein structure is significantly smaller [207]. Additionally, Ghorpade et al. [218] showed that acylation with acetic anhydride could not improve the tensile strength nor the water vapor permeation (WVP) or oxygen permeation (OP) of soy protein films.


Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review
Acetylation of protein chains, adapted from [215].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037656&req=5

ijms-17-01376-f003: Acetylation of protein chains, adapted from [215].
Mentions: Acetic anhydrides are used for the acetylation of proteins (Figure 3). This leads to covalent bonding of acetyl groups with the amino groups of the protein. Due to the fact that oppositely charged amino acid side chains attract each other, a reduction in the number of amino groups leads to partial unfolding of the protein backbone [207] Thereby, for example, the gel strength and water binding capacity of soy protein isolate (SPI) decrease. The solubility in the pH range from 4.5 to 7 becomes greater [216]. However, Franzen et al. [217] found that acetylation only has a minor effect on the functional properties of soy protein. Compared to the effect of succinylation, the effect of acetylation on the protein structure is significantly smaller [207]. Additionally, Ghorpade et al. [218] showed that acylation with acetic anhydride could not improve the tensile strength nor the water vapor permeation (WVP) or oxygen permeation (OP) of soy protein films.

View Article: PubMed Central - PubMed

ABSTRACT

Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films.

No MeSH data available.