Limits...
The CSL proteins, versatile transcription factors and context dependent corepressors of the notch signaling pathway

View Article: PubMed Central - PubMed

ABSTRACT

The Notch signaling pathway is a reiteratively used cell to cell communication pathway that triggers pleiotropic effects. The correct regulation of the pathway permits the efficient regulation of genes involved in cell fate decision throughout development. This activity relies notably on the CSL proteins, (an acronym for CBF-1/RBPJ-κ in Homo sapiens/Mus musculus respectively, Suppressor of Hairless in Drosophila melanogaster, Lag-1 in Caenorhabditis elegans) which is the unique transcription factor and DNA binding protein involved in this pathway. The CSL proteins have the capacity to recruit activation or repression complexes according to the cellular context. The aim of this review is to describe the different co-repressor proteins that interact directly with CSL proteins to form repression complexes thereby regulating the Notch signaling pathway in animal cells to give insights into the paralogous evolution of these co-repressors in higher eumetazoans and their subsequent effects at developmental processes.

No MeSH data available.


CIR-CSL interaction: CBF-1 interacting region for CIR is located at the BTD of CBF-1 (a CSL protein) that matches the domain used by the RAM domain of NICD. This interaction suggests a competition for the transcription factor, regulating in a negative fashion genes regulated by NSP in a specific cell context
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5037638&req=5

Fig4: CIR-CSL interaction: CBF-1 interacting region for CIR is located at the BTD of CBF-1 (a CSL protein) that matches the domain used by the RAM domain of NICD. This interaction suggests a competition for the transcription factor, regulating in a negative fashion genes regulated by NSP in a specific cell context

Mentions: Hsieh et al. (1999) [83] first isolated the CBF1 interacting corepressor CIR (for CBF1 interacting repressor) out of human B cells. This protein is evolutionarily conserved from man to worm as a homologue was identified in the C. elegans sequence. A highly conserved region located between amino acids 1 and 240 contains a CBF-1 (CSL) interaction domain. The CBF-1 interaction region for CIR was mapped between amino acids 233 and 249 [83], at the beta-trefoil domain (BTD) of CBF-1 (Fig. 4). The CIR binding site is conserved in all CSL proteins [17], demonstrating the tight collaboration between CBF-1 and CIR proteins in order to accurately regulate transcription whenever NSP is involved [83].Fig. 4


The CSL proteins, versatile transcription factors and context dependent corepressors of the notch signaling pathway
CIR-CSL interaction: CBF-1 interacting region for CIR is located at the BTD of CBF-1 (a CSL protein) that matches the domain used by the RAM domain of NICD. This interaction suggests a competition for the transcription factor, regulating in a negative fashion genes regulated by NSP in a specific cell context
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5037638&req=5

Fig4: CIR-CSL interaction: CBF-1 interacting region for CIR is located at the BTD of CBF-1 (a CSL protein) that matches the domain used by the RAM domain of NICD. This interaction suggests a competition for the transcription factor, regulating in a negative fashion genes regulated by NSP in a specific cell context
Mentions: Hsieh et al. (1999) [83] first isolated the CBF1 interacting corepressor CIR (for CBF1 interacting repressor) out of human B cells. This protein is evolutionarily conserved from man to worm as a homologue was identified in the C. elegans sequence. A highly conserved region located between amino acids 1 and 240 contains a CBF-1 (CSL) interaction domain. The CBF-1 interaction region for CIR was mapped between amino acids 233 and 249 [83], at the beta-trefoil domain (BTD) of CBF-1 (Fig. 4). The CIR binding site is conserved in all CSL proteins [17], demonstrating the tight collaboration between CBF-1 and CIR proteins in order to accurately regulate transcription whenever NSP is involved [83].Fig. 4

View Article: PubMed Central - PubMed

ABSTRACT

The Notch signaling pathway is a reiteratively used cell to cell communication pathway that triggers pleiotropic effects. The correct regulation of the pathway permits the efficient regulation of genes involved in cell fate decision throughout development. This activity relies notably on the CSL proteins, (an acronym for CBF-1/RBPJ-κ in Homo sapiens/Mus musculus respectively, Suppressor of Hairless in Drosophila melanogaster, Lag-1 in Caenorhabditis elegans) which is the unique transcription factor and DNA binding protein involved in this pathway. The CSL proteins have the capacity to recruit activation or repression complexes according to the cellular context. The aim of this review is to describe the different co-repressor proteins that interact directly with CSL proteins to form repression complexes thereby regulating the Notch signaling pathway in animal cells to give insights into the paralogous evolution of these co-repressors in higher eumetazoans and their subsequent effects at developmental processes.

No MeSH data available.