Limits...
Autologous bone grafts with MSCs or FGF-2 accelerate bone union in large bone defects

View Article: PubMed Central - PubMed

ABSTRACT

Bacground: Although the contribution of fibroblast growth factor (FGF)-2 and mesenchymal stromal cells (MSCs) to bone formation is well known, few studies have investigated the combination of an autologous bone graft with FGF-2 or MSCs for large bone defects.

Methods: We studied an atrophic non-union model with a large bone defect, created by resecting a 10-mm section from the center of each femoral shaft of 12-week-old Sprague-Dawley rats. The periosteum of the proximal and distal ends of the femur was cauterized circumferentially, and excised portions were used in the contralateral femur as autologous bone grafts. The rats were randomized to three groups and given no further treatment (group A), administered FGF-2 at 20 μg/20 μL (group B), or 1.0 × 106 MSCs (group C). Radiographs were taken every 2 weeks up to 12 weeks, with CT performed at 12 weeks. Harvested femurs were stained with toluidine blue and evaluated using radiographic and histology scores.

Results: Radiographic and histological evaluation showed that bone union had been achieved at 12 weeks in group C, while group B showed callus formation and bridging callus but non-union, and in group A, callus formation alone was evident. Both radiographic and histological scores were significantly higher at 2, 4, 6, 8, 10, and 12 weeks in groups B and C than group A and also significantly higher in group C than group B at 12 weeks.

Conclusions: These data suggest that autologous bone grafts in combination with MSCs benefit difficult cases which cannot be treated with autologous bone grafts alone.

No MeSH data available.


Related in: MedlinePlus

Atrophic non-union model of a large bone defect. In each rat, the bilateral femoral shafts were used for harvesting of the autologous bone graft. The mid-shaft of the femur was surgically removed and used as an autologous bone graft, 10 mm in length. The autologous bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5037630&req=5

Fig1: Atrophic non-union model of a large bone defect. In each rat, the bilateral femoral shafts were used for harvesting of the autologous bone graft. The mid-shaft of the femur was surgically removed and used as an autologous bone graft, 10 mm in length. The autologous bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side

Mentions: All surgical procedures were performed under normal sterile conditions, and animals were anesthetized by intraperitoneal administration of sodium 5-ethyl-5-barbiturate (50 mg/kg). Non-union was induced in the bilateral femurs by creating a large bone defect and cauterizing the periosteum. Prior to surgery, the extremities were shaved and prepared in a sterile fashion. In each rat, both femurs were operated on and the femoral shafts on both sides were used for harvesting of the autologous bone for grafts. The bone grafts were harvested through a lateral incision. The muscle and periosteum were stripped circumferentially and the distal and proximal ends of the mid-shaft of the femur were osteotomized transversely using an oscillating power saw, then a 10-mm length of the mid-shaft of the femur was removed surgically. After removing the mid-shaft of the femur, the periostea were cauterized circumferentially at a distance of 2 mm on both ends of the femur to create non-union. An autologous graft of bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side. The bone grafts and femoral ends were then fixed in apposition with a single intramedullary 2.0-mm diameter K-wire, and the wound was closed in layers (Fig. 1).Fig. 1


Autologous bone grafts with MSCs or FGF-2 accelerate bone union in large bone defects
Atrophic non-union model of a large bone defect. In each rat, the bilateral femoral shafts were used for harvesting of the autologous bone graft. The mid-shaft of the femur was surgically removed and used as an autologous bone graft, 10 mm in length. The autologous bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5037630&req=5

Fig1: Atrophic non-union model of a large bone defect. In each rat, the bilateral femoral shafts were used for harvesting of the autologous bone graft. The mid-shaft of the femur was surgically removed and used as an autologous bone graft, 10 mm in length. The autologous bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side
Mentions: All surgical procedures were performed under normal sterile conditions, and animals were anesthetized by intraperitoneal administration of sodium 5-ethyl-5-barbiturate (50 mg/kg). Non-union was induced in the bilateral femurs by creating a large bone defect and cauterizing the periosteum. Prior to surgery, the extremities were shaved and prepared in a sterile fashion. In each rat, both femurs were operated on and the femoral shafts on both sides were used for harvesting of the autologous bone for grafts. The bone grafts were harvested through a lateral incision. The muscle and periosteum were stripped circumferentially and the distal and proximal ends of the mid-shaft of the femur were osteotomized transversely using an oscillating power saw, then a 10-mm length of the mid-shaft of the femur was removed surgically. After removing the mid-shaft of the femur, the periostea were cauterized circumferentially at a distance of 2 mm on both ends of the femur to create non-union. An autologous graft of bone removed from the right femur was transplanted to the left femur, and the left side was transplanted to the right side. The bone grafts and femoral ends were then fixed in apposition with a single intramedullary 2.0-mm diameter K-wire, and the wound was closed in layers (Fig. 1).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Bacground: Although the contribution of fibroblast growth factor (FGF)-2 and mesenchymal stromal cells (MSCs) to bone formation is well known, few studies have investigated the combination of an autologous bone graft with FGF-2 or MSCs for large bone defects.

Methods: We studied an atrophic non-union model with a large bone defect, created by resecting a 10-mm section from the center of each femoral shaft of 12-week-old Sprague-Dawley rats. The periosteum of the proximal and distal ends of the femur was cauterized circumferentially, and excised portions were used in the contralateral femur as autologous bone grafts. The rats were randomized to three groups and given no further treatment (group A), administered FGF-2 at 20 μg/20 μL (group B), or 1.0 × 106 MSCs (group C). Radiographs were taken every 2 weeks up to 12 weeks, with CT performed at 12 weeks. Harvested femurs were stained with toluidine blue and evaluated using radiographic and histology scores.

Results: Radiographic and histological evaluation showed that bone union had been achieved at 12 weeks in group C, while group B showed callus formation and bridging callus but non-union, and in group A, callus formation alone was evident. Both radiographic and histological scores were significantly higher at 2, 4, 6, 8, 10, and 12 weeks in groups B and C than group A and also significantly higher in group C than group B at 12 weeks.

Conclusions: These data suggest that autologous bone grafts in combination with MSCs benefit difficult cases which cannot be treated with autologous bone grafts alone.

No MeSH data available.


Related in: MedlinePlus