Limits...
Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

View Article: PubMed Central - PubMed

ABSTRACT

The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption.

No MeSH data available.


Related in: MedlinePlus

Radical scavenging activity measured in the natural almond skin digestion medium (panel (A)) and the blanched almond skin (BS) digestion medium (panel (B)) after in vitro gastric and gastric + duodenal digestion. Values are expressed as mg of extract needed to scavenge 50 µmol of the initial DPPH• concentration (SE50). 0 to 6: gastric samples (see Table 1 for sampling time). DD: sample post in vitro gastric + duodenal digestion. Water (WT), home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). †p < 0.01 vs. CB at the same sampling time; ‡p < 0.01 vs. HB at the same sampling time; §p < 0.01 vs. FM at the same sampling time.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037553&req=5

nutrients-08-00568-f007: Radical scavenging activity measured in the natural almond skin digestion medium (panel (A)) and the blanched almond skin (BS) digestion medium (panel (B)) after in vitro gastric and gastric + duodenal digestion. Values are expressed as mg of extract needed to scavenge 50 µmol of the initial DPPH• concentration (SE50). 0 to 6: gastric samples (see Table 1 for sampling time). DD: sample post in vitro gastric + duodenal digestion. Water (WT), home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). †p < 0.01 vs. CB at the same sampling time; ‡p < 0.01 vs. HB at the same sampling time; §p < 0.01 vs. FM at the same sampling time.

Mentions: In agreement with the total phenolic content, the radical scavenging activity, measured by DPPH, was lower after digestion (Figure 6). As shown in panel A, no statistically significant difference was observed in NS across all matrices; however in panel B, a statistically significant difference in WT vs. CB, HB and FM for sample 6 (last gastric sample) was observed. A corresponding increase of the antioxidant status was detected in the digestion medium, with the exception of FM; a statistically significant difference (p < 0.01) was observed in BS digestion media when comparing FM vs. WT, CB and HB and in NS when comparing FM vs. WT and CB (Figure 7).


Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion
Radical scavenging activity measured in the natural almond skin digestion medium (panel (A)) and the blanched almond skin (BS) digestion medium (panel (B)) after in vitro gastric and gastric + duodenal digestion. Values are expressed as mg of extract needed to scavenge 50 µmol of the initial DPPH• concentration (SE50). 0 to 6: gastric samples (see Table 1 for sampling time). DD: sample post in vitro gastric + duodenal digestion. Water (WT), home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). †p < 0.01 vs. CB at the same sampling time; ‡p < 0.01 vs. HB at the same sampling time; §p < 0.01 vs. FM at the same sampling time.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037553&req=5

nutrients-08-00568-f007: Radical scavenging activity measured in the natural almond skin digestion medium (panel (A)) and the blanched almond skin (BS) digestion medium (panel (B)) after in vitro gastric and gastric + duodenal digestion. Values are expressed as mg of extract needed to scavenge 50 µmol of the initial DPPH• concentration (SE50). 0 to 6: gastric samples (see Table 1 for sampling time). DD: sample post in vitro gastric + duodenal digestion. Water (WT), home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). †p < 0.01 vs. CB at the same sampling time; ‡p < 0.01 vs. HB at the same sampling time; §p < 0.01 vs. FM at the same sampling time.
Mentions: In agreement with the total phenolic content, the radical scavenging activity, measured by DPPH, was lower after digestion (Figure 6). As shown in panel A, no statistically significant difference was observed in NS across all matrices; however in panel B, a statistically significant difference in WT vs. CB, HB and FM for sample 6 (last gastric sample) was observed. A corresponding increase of the antioxidant status was detected in the digestion medium, with the exception of FM; a statistically significant difference (p < 0.01) was observed in BS digestion media when comparing FM vs. WT, CB and HB and in NS when comparing FM vs. WT and CB (Figure 7).

View Article: PubMed Central - PubMed

ABSTRACT

The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p &lt; 0.05) and flavonols (p &lt; 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption.

No MeSH data available.


Related in: MedlinePlus