Limits...
A Web-Based Telehealth Training Platform Incorporating Automated Nonverbal Behavior Feedback for Teaching Communication Skills to Medical Students: A Randomized Crossover Study

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: In the interests of patient health outcomes, it is important for medical students to develop clinical communication skills. We previously proposed a telehealth communication skills training platform (EQClinic) with automated nonverbal behavior feedback for medical students, and it was able to improve medical students’ awareness of their nonverbal communication.

Objective: This study aimed to evaluate the effectiveness of EQClinic to improve clinical communication skills of medical students.

Methods: We conducted a 2-group randomized crossover trial between February and June 2016. Participants were second-year medical students enrolled in a clinical communication skills course at an Australian university. Students were randomly allocated to complete online EQClinic training during weeks 1–5 (group A) or to complete EQClinic training during weeks 8–11 (group B). EQClinic delivered an automated visual presentation of students’ nonverbal behavior coupled with human feedback from a standardized patient (SP). All students were offered two opportunities to complete face-to-face consultations with SPs. The two face-to-face consultations were conducted in weeks 6–7 and 12–13 for both groups, and were rated by tutors who were blinded to group allocation. Student-Patient Observed Communication Assessment (SOCA) was collected by blinded assessors (n=28) at 2 time points and also by an SP (n=83). Tutor-rated clinical communications skill in face-to-face consultations was the primary outcome and was assessed with the SOCA. We used t tests to examine the students’ performance during face-to-face consultations pre- and postexposure to EQClinic.

Results: We randomly allocated 268 medical students to the 2 groups (group A: n=133; group B: n=135). SOCA communication skills measures (score range 4–16) from the first face-to-face consultation were significantly higher for students in group A who had completed EQClinic training and reviewed the nonverbal behavior feedback, compared with group B, who had completed only the course curriculum components (P=.04). Furthermore, at the second face-to-face assessment, the group that completed a teleconsultation between the two face-to-face consultations (group B) showed improved communication skills (P=.005), and the one that had teleconsultations before the first face-to-face consultation (group A) did not show improvement.

Conclusions: The EQClinic is a useful tool for medical students’ clinical communication skills training that can be applied to university settings to improve students clinical communication skills development.

No MeSH data available.


Flowchart of student participation in the EQClinic medical communication training program.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5037316&req=5

figure1: Flowchart of student participation in the EQClinic medical communication training program.

Mentions: The administrator of this course randomly allocated a cohort of 268 students to group A (n=133) or group B (n=135) (see Figure 1) using a computer-generated random number sequence. One student was moved from group A to group B for administrative reasons. Following random allocation to a group, each participant was provided three opportunities to complete simulated clinical consultations with SPs: a teleconsultation using EQClinic, and two face-to-face consultations. In this study, all consultations focused on history-taking skills, to ensure a structured and consistent interaction. The allocation of the three consultations was varied between the 2 groups. The study was conducted over 13 weeks, and it included 4 periods (see Figure 1). (1) During weeks 1–5, group A completed a teleconsultation using EQClinic and group B was blocked from the platform. (2) During weeks 6 and 7, both groups completed a face-to-face consultation. In this period, group A was still able to access the platform for reviewing feedback only. (3) During weeks 8–11, group B completed an EQClinic consultation and group A was blocked from the platform. (4) During weeks 12 and 13, both groups were asked to complete another face-to-face consultation. In this period, group B was able to access the platform for reviewing feedback only. Due to the limited resources of setting up face-to-face consultations, not all enrolled students completed two face-to-face consultations. However, having a teleconsultation using EQClinic was mandatory for every student.


A Web-Based Telehealth Training Platform Incorporating Automated Nonverbal Behavior Feedback for Teaching Communication Skills to Medical Students: A Randomized Crossover Study
Flowchart of student participation in the EQClinic medical communication training program.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5037316&req=5

figure1: Flowchart of student participation in the EQClinic medical communication training program.
Mentions: The administrator of this course randomly allocated a cohort of 268 students to group A (n=133) or group B (n=135) (see Figure 1) using a computer-generated random number sequence. One student was moved from group A to group B for administrative reasons. Following random allocation to a group, each participant was provided three opportunities to complete simulated clinical consultations with SPs: a teleconsultation using EQClinic, and two face-to-face consultations. In this study, all consultations focused on history-taking skills, to ensure a structured and consistent interaction. The allocation of the three consultations was varied between the 2 groups. The study was conducted over 13 weeks, and it included 4 periods (see Figure 1). (1) During weeks 1–5, group A completed a teleconsultation using EQClinic and group B was blocked from the platform. (2) During weeks 6 and 7, both groups completed a face-to-face consultation. In this period, group A was still able to access the platform for reviewing feedback only. (3) During weeks 8–11, group B completed an EQClinic consultation and group A was blocked from the platform. (4) During weeks 12 and 13, both groups were asked to complete another face-to-face consultation. In this period, group B was able to access the platform for reviewing feedback only. Due to the limited resources of setting up face-to-face consultations, not all enrolled students completed two face-to-face consultations. However, having a teleconsultation using EQClinic was mandatory for every student.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: In the interests of patient health outcomes, it is important for medical students to develop clinical communication skills. We previously proposed a telehealth communication skills training platform (EQClinic) with automated nonverbal behavior feedback for medical students, and it was able to improve medical students’ awareness of their nonverbal communication.

Objective: This study aimed to evaluate the effectiveness of EQClinic to improve clinical communication skills of medical students.

Methods: We conducted a 2-group randomized crossover trial between February and June 2016. Participants were second-year medical students enrolled in a clinical communication skills course at an Australian university. Students were randomly allocated to complete online EQClinic training during weeks 1–5 (group A) or to complete EQClinic training during weeks 8–11 (group B). EQClinic delivered an automated visual presentation of students’ nonverbal behavior coupled with human feedback from a standardized patient (SP). All students were offered two opportunities to complete face-to-face consultations with SPs. The two face-to-face consultations were conducted in weeks 6–7 and 12–13 for both groups, and were rated by tutors who were blinded to group allocation. Student-Patient Observed Communication Assessment (SOCA) was collected by blinded assessors (n=28) at 2 time points and also by an SP (n=83). Tutor-rated clinical communications skill in face-to-face consultations was the primary outcome and was assessed with the SOCA. We used t tests to examine the students’ performance during face-to-face consultations pre- and postexposure to EQClinic.

Results: We randomly allocated 268 medical students to the 2 groups (group A: n=133; group B: n=135). SOCA communication skills measures (score range 4–16) from the first face-to-face consultation were significantly higher for students in group A who had completed EQClinic training and reviewed the nonverbal behavior feedback, compared with group B, who had completed only the course curriculum components (P=.04). Furthermore, at the second face-to-face assessment, the group that completed a teleconsultation between the two face-to-face consultations (group B) showed improved communication skills (P=.005), and the one that had teleconsultations before the first face-to-face consultation (group A) did not show improvement.

Conclusions: The EQClinic is a useful tool for medical students’ clinical communication skills training that can be applied to university settings to improve students clinical communication skills development.

No MeSH data available.