Limits...
MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers

View Article: PubMed Central - PubMed

ABSTRACT

Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy.

No MeSH data available.


Number of new publications found by the term “miRNA AND cancer” in SCOPUS database.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037200&req=5

Figure 1: Number of new publications found by the term “miRNA AND cancer” in SCOPUS database.

Mentions: Research in the field of non-coding nucleic acids has advanced extensively in the last 15 years. It is now well known, that dysregulation of miRNAs, powerful regulators of gene expression, is associated with many diseases. MiRNAs are investigated thoroughly in cancer biology and oncology and the number of published articles is growing (Figure 1). Last 10 years brought us an immense amount of information about the roles of miRNAs in cancer cell pathophysiology. All described hallmarks of cancer (Hanahan and Weinberg, 2011) are in relation with some miRNA imbalance (Ruan et al., 2009). Attempts to therapeutically interfere with miRNAs levels in pathologic cells are moving forward to preclinical and clinical phases of new therapies development. Although there are severe limitations and barriers facing miRNA-based therapy, more and more studies are performed with auspicious results.


MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers
Number of new publications found by the term “miRNA AND cancer” in SCOPUS database.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037200&req=5

Figure 1: Number of new publications found by the term “miRNA AND cancer” in SCOPUS database.
Mentions: Research in the field of non-coding nucleic acids has advanced extensively in the last 15 years. It is now well known, that dysregulation of miRNAs, powerful regulators of gene expression, is associated with many diseases. MiRNAs are investigated thoroughly in cancer biology and oncology and the number of published articles is growing (Figure 1). Last 10 years brought us an immense amount of information about the roles of miRNAs in cancer cell pathophysiology. All described hallmarks of cancer (Hanahan and Weinberg, 2011) are in relation with some miRNA imbalance (Ruan et al., 2009). Attempts to therapeutically interfere with miRNAs levels in pathologic cells are moving forward to preclinical and clinical phases of new therapies development. Although there are severe limitations and barriers facing miRNA-based therapy, more and more studies are performed with auspicious results.

View Article: PubMed Central - PubMed

ABSTRACT

Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy.

No MeSH data available.