Limits...
Assessing Executive Functions in Preschoolers Using Shape School Task

View Article: PubMed Central - PubMed

ABSTRACT

Over the last two decades, there has been a growing interest in the study of the development of executive functions (EF) in preschool children due to their relationship with different cognitive, psychological, social and academic domains. Early detection of individual differences in executive functioning can have major implications for basic and applied research. Consequently, there is a key need for assessment tools adapted to preschool skills: Shape School has been shown to be a suitable task for this purpose. Our study uses Shape School as the main task to analyze development of inhibition, task-switching and working memory in a sample of 304 preschoolers (age range 3.25–6.50 years). Additionally, we include cognitive tasks for the evaluation of verbal variables (vocabulary, word reasoning and short-term memory) and performance variables (picture completion and symbol search), so as to analyze their relationship with EFs. Our results show age-associated improvements in EFs and the cognitive variables assessed. Furthermore, correlation analyses reveal positive relationships between EFs and the other cognitive variables. More specifically, using structural equation modeling and including age direct and indirect effects, our results suggest that EFs explain to a greater extent performance on verbal and performance tasks. These findings provide further information to support research that considers preschool age to be a crucial period for the development of EFs and their relationship with other cognitive processes.

No MeSH data available.


Related in: MedlinePlus

Structural equation model. The Shape School conditions are based on the efficiency score; ShS, Shape School; Inh-Sw, inhibit-switch; WSB, word span backward; EF, executive functions; SS, symbol search; Word R, word reasoning; PC, picture completion. Numbers in italics represent squared multiple correlations.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037173&req=5

Figure 1: Structural equation model. The Shape School conditions are based on the efficiency score; ShS, Shape School; Inh-Sw, inhibit-switch; WSB, word span backward; EF, executive functions; SS, symbol search; Word R, word reasoning; PC, picture completion. Numbers in italics represent squared multiple correlations.

Mentions: The SEM model was calculated using only the sample of children older than 48 months (4–5 and 5–6 years age groups), since the children in the 3–4 years age group were unable to complete the final two Shape School conditions (switch and inhibition-switch). In this model, the scores obtained on the Shape School inhibition, switch, inhibition-switch conditions and the word span backward variable were considered, thus forming a latent variable of a unidimensional construct of EF. Table 4 shows the goodness of fit statistics. Figure 1 shows the estimated parameters (presented as standardized). According to these statistics, 30% of the variance of the WIPPSI latent variable (comprising vocabulary, symbol search, word reasoning, and picture completion observed variables), is explained by the EF latent variable while 16.8% is explained by the age variable. Results also show that the standardized indirect effect of age on WIPPSI latent variable through EF latent variable is.35 (p = 0.009).


Assessing Executive Functions in Preschoolers Using Shape School Task
Structural equation model. The Shape School conditions are based on the efficiency score; ShS, Shape School; Inh-Sw, inhibit-switch; WSB, word span backward; EF, executive functions; SS, symbol search; Word R, word reasoning; PC, picture completion. Numbers in italics represent squared multiple correlations.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037173&req=5

Figure 1: Structural equation model. The Shape School conditions are based on the efficiency score; ShS, Shape School; Inh-Sw, inhibit-switch; WSB, word span backward; EF, executive functions; SS, symbol search; Word R, word reasoning; PC, picture completion. Numbers in italics represent squared multiple correlations.
Mentions: The SEM model was calculated using only the sample of children older than 48 months (4–5 and 5–6 years age groups), since the children in the 3–4 years age group were unable to complete the final two Shape School conditions (switch and inhibition-switch). In this model, the scores obtained on the Shape School inhibition, switch, inhibition-switch conditions and the word span backward variable were considered, thus forming a latent variable of a unidimensional construct of EF. Table 4 shows the goodness of fit statistics. Figure 1 shows the estimated parameters (presented as standardized). According to these statistics, 30% of the variance of the WIPPSI latent variable (comprising vocabulary, symbol search, word reasoning, and picture completion observed variables), is explained by the EF latent variable while 16.8% is explained by the age variable. Results also show that the standardized indirect effect of age on WIPPSI latent variable through EF latent variable is.35 (p = 0.009).

View Article: PubMed Central - PubMed

ABSTRACT

Over the last two decades, there has been a growing interest in the study of the development of executive functions (EF) in preschool children due to their relationship with different cognitive, psychological, social and academic domains. Early detection of individual differences in executive functioning can have major implications for basic and applied research. Consequently, there is a key need for assessment tools adapted to preschool skills: Shape School has been shown to be a suitable task for this purpose. Our study uses Shape School as the main task to analyze development of inhibition, task-switching and working memory in a sample of 304 preschoolers (age range 3.25–6.50 years). Additionally, we include cognitive tasks for the evaluation of verbal variables (vocabulary, word reasoning and short-term memory) and performance variables (picture completion and symbol search), so as to analyze their relationship with EFs. Our results show age-associated improvements in EFs and the cognitive variables assessed. Furthermore, correlation analyses reveal positive relationships between EFs and the other cognitive variables. More specifically, using structural equation modeling and including age direct and indirect effects, our results suggest that EFs explain to a greater extent performance on verbal and performance tasks. These findings provide further information to support research that considers preschool age to be a crucial period for the development of EFs and their relationship with other cognitive processes.

No MeSH data available.


Related in: MedlinePlus