Limits...
Misaligned and Polarity-Reversed Faces Determine Face-specific Capacity Limits

View Article: PubMed Central - PubMed

ABSTRACT

Previous research using flanker paradigms suggests that peripheral distracter faces are automatically processed when participants have to classify a single central familiar target face. These distracter interference effects disappear when the central task contains additional anonymous (non-target) faces that load the search for the face target, but not when the central task contains additional non-face stimuli, suggesting there are face-specific capacity limits in visual processing. Here we tested whether manipulating the format of non-target faces in the search task affected face-specific capacity limits. Experiment 1 replicated earlier findings that a distracter face is processed even in high load conditions when participants looked for a target name of a famous person among additional names (non-targets) in a central search array. Two further experiments show that when targets and non-targets were faces (instead of names), however, distracter interference was eliminated under high load—adding non-target faces to the search array exhausted processing capacity for peripheral faces. The novel finding was that replacing non-target faces with images that consisted of two horizontally misaligned face-parts reduced distracter processing. Similar results were found when the polarity of a non-target face image was reversed. These results indicate that face-specific capacity limits are not determined by the configural properties of face processing, but by face parts.

No MeSH data available.


Related in: MedlinePlus

Examples of a trial display in the congruent condition with relevant set sizes one (left panel), three (middle panel), and polarity-inversed non-targets (right panel) in Experiment 3.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037134&req=5

Figure 5: Examples of a trial display in the congruent condition with relevant set sizes one (left panel), three (middle panel), and polarity-inversed non-targets (right panel) in Experiment 3.

Mentions: The design and set-up of the experiment was identical to Experiment 2, except for the following changes: Twenty-four male faces were presented which comprised of six famous politicians (adding Nicolas Sarkozy and Gordon Brown), six famous film stars (adding Brad Pitt and Michael Douglas), and twelve unfamiliar faces which served as non-targets in conditions with set size 3 (adding 2 either polarity reversed or 2 intact faces to the search display containing the target). The condition containing misaligned non-target faces in Experiment 2 was replaced with a “negative-high-load” condition: In the negative-high load condition, the target face was presented together with two polar-reversed non-target faces, which were image-manipulated versions of the 12 anonymous faces used in the high load (see Figure 5). There were 8 blocks of 72 trial screens (576 in total), after an initial practice block. The identity and position of the target face, the identity and position of the distracter face were counterbalanced across all trials.


Misaligned and Polarity-Reversed Faces Determine Face-specific Capacity Limits
Examples of a trial display in the congruent condition with relevant set sizes one (left panel), three (middle panel), and polarity-inversed non-targets (right panel) in Experiment 3.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037134&req=5

Figure 5: Examples of a trial display in the congruent condition with relevant set sizes one (left panel), three (middle panel), and polarity-inversed non-targets (right panel) in Experiment 3.
Mentions: The design and set-up of the experiment was identical to Experiment 2, except for the following changes: Twenty-four male faces were presented which comprised of six famous politicians (adding Nicolas Sarkozy and Gordon Brown), six famous film stars (adding Brad Pitt and Michael Douglas), and twelve unfamiliar faces which served as non-targets in conditions with set size 3 (adding 2 either polarity reversed or 2 intact faces to the search display containing the target). The condition containing misaligned non-target faces in Experiment 2 was replaced with a “negative-high-load” condition: In the negative-high load condition, the target face was presented together with two polar-reversed non-target faces, which were image-manipulated versions of the 12 anonymous faces used in the high load (see Figure 5). There were 8 blocks of 72 trial screens (576 in total), after an initial practice block. The identity and position of the target face, the identity and position of the distracter face were counterbalanced across all trials.

View Article: PubMed Central - PubMed

ABSTRACT

Previous research using flanker paradigms suggests that peripheral distracter faces are automatically processed when participants have to classify a single central familiar target face. These distracter interference effects disappear when the central task contains additional anonymous (non-target) faces that load the search for the face target, but not when the central task contains additional non-face stimuli, suggesting there are face-specific capacity limits in visual processing. Here we tested whether manipulating the format of non-target faces in the search task affected face-specific capacity limits. Experiment 1 replicated earlier findings that a distracter face is processed even in high load conditions when participants looked for a target name of a famous person among additional names (non-targets) in a central search array. Two further experiments show that when targets and non-targets were faces (instead of names), however, distracter interference was eliminated under high load—adding non-target faces to the search array exhausted processing capacity for peripheral faces. The novel finding was that replacing non-target faces with images that consisted of two horizontally misaligned face-parts reduced distracter processing. Similar results were found when the polarity of a non-target face image was reversed. These results indicate that face-specific capacity limits are not determined by the configural properties of face processing, but by face parts.

No MeSH data available.


Related in: MedlinePlus