Limits...
Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters

View Article: PubMed Central - PubMed

ABSTRACT

Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters.

No MeSH data available.


Dendrogram using Bray–Curtis dissimilarites and hierarchical clustering, showing differences in community compositions between total (rDNA, ■) and active (rRNA, ◆) Bacteria and Archaea over the year in Roskilde Fjord (A) and Great Belt (B).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037133&req=5

Figure 6: Dendrogram using Bray–Curtis dissimilarites and hierarchical clustering, showing differences in community compositions between total (rDNA, ■) and active (rRNA, ◆) Bacteria and Archaea over the year in Roskilde Fjord (A) and Great Belt (B).

Mentions: A total of 1,467,365 high quality reads remained after quality and chimera check, with 12,057 reads assigned to Archaea. Clustering at 97% similarity resulted in a total of 3,009 OTUs. Patterns in community composition differed over the year between the total (rDNA) and the active bacteria (rRNA; Figure 6; Supplementary Figure S5). In RF, the total communities formed a distinct group of sub clusters of neighboring months indicating seasonal progression, which to some degree was mirrored by the active communities (Figure 6A). In January exclusively, the total and active communities were more similar than to any neighboring month’s community. In GB, the total and active communities formed several discrete clusters, with no clear seasonal progression (Figure 6B). The phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Cyanobacteria dominated over the year in both the total and active communities in RF and GB (Supplementary Figure S5). They made up between 82 – 93 and 80 – 94% of the total communities in RF and GB, respectively. Similarly, they made up between 85 – 98 and 81 – 97% in the active communities in RF and GB, respectively.


Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters
Dendrogram using Bray–Curtis dissimilarites and hierarchical clustering, showing differences in community compositions between total (rDNA, ■) and active (rRNA, ◆) Bacteria and Archaea over the year in Roskilde Fjord (A) and Great Belt (B).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037133&req=5

Figure 6: Dendrogram using Bray–Curtis dissimilarites and hierarchical clustering, showing differences in community compositions between total (rDNA, ■) and active (rRNA, ◆) Bacteria and Archaea over the year in Roskilde Fjord (A) and Great Belt (B).
Mentions: A total of 1,467,365 high quality reads remained after quality and chimera check, with 12,057 reads assigned to Archaea. Clustering at 97% similarity resulted in a total of 3,009 OTUs. Patterns in community composition differed over the year between the total (rDNA) and the active bacteria (rRNA; Figure 6; Supplementary Figure S5). In RF, the total communities formed a distinct group of sub clusters of neighboring months indicating seasonal progression, which to some degree was mirrored by the active communities (Figure 6A). In January exclusively, the total and active communities were more similar than to any neighboring month’s community. In GB, the total and active communities formed several discrete clusters, with no clear seasonal progression (Figure 6B). The phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Cyanobacteria dominated over the year in both the total and active communities in RF and GB (Supplementary Figure S5). They made up between 82 – 93 and 80 – 94% of the total communities in RF and GB, respectively. Similarly, they made up between 85 – 98 and 81 – 97% in the active communities in RF and GB, respectively.

View Article: PubMed Central - PubMed

ABSTRACT

Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters.

No MeSH data available.