Limits...
Exponential-modified discrete Lindley distribution

View Article: PubMed Central - PubMed

ABSTRACT

In this study, we have considered a series system composed of stochastically independent M-component where M is a random variable having the zero truncated modified discrete Lindley distribution. This distribution is newly introduced by transforming on original parameter. The properties of the distribution of the lifetime of above system have been examined under the given circumstances and also parameters of this new lifetime distribution are estimated by using moments, maximum likelihood and EM-algorithm.

No MeSH data available.


Survival function of EMDL random variable for selected parameter values
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037113&req=5

Fig3: Survival function of EMDL random variable for selected parameter values

Mentions: The survival function of X is given by (Fig. 3)6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\left( x\right) =\frac{{\theta }^2}{1+2\theta }\left( \frac{e^{-\beta x}\left( 3-2\left( 1-\theta \right) e^{-\beta x}\right) }{{\left( 1-\left( 1-\theta \right) e^{-\beta x}\right) }^2}\right).$$\end{document}Sx=θ21+2θe-βx3-21-θe-βx1-1-θe-βx2.Fig. 3


Exponential-modified discrete Lindley distribution
Survival function of EMDL random variable for selected parameter values
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037113&req=5

Fig3: Survival function of EMDL random variable for selected parameter values
Mentions: The survival function of X is given by (Fig. 3)6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\left( x\right) =\frac{{\theta }^2}{1+2\theta }\left( \frac{e^{-\beta x}\left( 3-2\left( 1-\theta \right) e^{-\beta x}\right) }{{\left( 1-\left( 1-\theta \right) e^{-\beta x}\right) }^2}\right).$$\end{document}Sx=θ21+2θe-βx3-21-θe-βx1-1-θe-βx2.Fig. 3

View Article: PubMed Central - PubMed

ABSTRACT

In this study, we have considered a series system composed of stochastically independent M-component where M is a random variable having the zero truncated modified discrete Lindley distribution. This distribution is newly introduced by transforming on original parameter. The properties of the distribution of the lifetime of above system have been examined under the given circumstances and also parameters of this new lifetime distribution are estimated by using moments, maximum likelihood and EM-algorithm.

No MeSH data available.