Exponential-modified discrete Lindley distribution View Article: PubMed Central - PubMed ABSTRACTIn this study, we have considered a series system composed of stochastically independent M-component where M is a random variable having the zero truncated modified discrete Lindley distribution. This distribution is newly introduced by transforming on original parameter. The properties of the distribution of the lifetime of above system have been examined under the given circumstances and also parameters of this new lifetime distribution are estimated by using moments, maximum likelihood and EM-algorithm. No MeSH data available. © Copyright Policy - OpenAccess Related In: Results  -  Collection License getmorefigures.php?uid=PMC5037113&req=5 .flowplayer { width: px; height: px; } Fig3: Survival function of EMDL random variable for selected parameter values Mentions: The survival function of X is given by (Fig. 3)6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\left( x\right) =\frac{{\theta }^2}{1+2\theta }\left( \frac{e^{-\beta x}\left( 3-2\left( 1-\theta \right) e^{-\beta x}\right) }{{\left( 1-\left( 1-\theta \right) e^{-\beta x}\right) }^2}\right).$$\end{document}Sx=θ21+2θe-βx3-21-θe-βx1-1-θe-βx2.Fig. 3

Exponential-modified discrete Lindley distribution
Related In: Results  -  Collection

Mentions: The survival function of X is given by (Fig. 3)6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\left( x\right) =\frac{{\theta }^2}{1+2\theta }\left( \frac{e^{-\beta x}\left( 3-2\left( 1-\theta \right) e^{-\beta x}\right) }{{\left( 1-\left( 1-\theta \right) e^{-\beta x}\right) }^2}\right).$$\end{document}Sx=θ21+2θe-βx3-21-θe-βx1-1-θe-βx2.Fig. 3