Limits...
Impact of hepatitis B virus infection on hepatic metabolic signaling pathway

View Article: PubMed Central - PubMed

ABSTRACT

A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.

No MeSH data available.


Related in: MedlinePlus

Changes in the hepatic metabolic signaling pathway induced by hepatitis B virus infection. Alterations in related signaling pathways (including glucose, lipids, nucleic acids, bile acids and vitamins) following hepatitis B virus (HBV) infection are marked and highlighted in this figure. The influence of HBV infection on vitamin D metabolism is unclear.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5037084&req=5

Figure 2: Changes in the hepatic metabolic signaling pathway induced by hepatitis B virus infection. Alterations in related signaling pathways (including glucose, lipids, nucleic acids, bile acids and vitamins) following hepatitis B virus (HBV) infection are marked and highlighted in this figure. The influence of HBV infection on vitamin D metabolism is unclear.

Mentions: In conclusion, we have systematically outlined the hepatic metabolic responses to HBV infection in this review. According to the above observations, multiple studies combining systematic approaches and molecular biological assays found that, from the molecular mechanism perspective, HBV infection interfered with the hepatic metabolic signaling pathway (Figure 2), including glucose, lipid, nucleic acid, bile acid and vitamin metabolism, ultimately resulting in metabolic derangement. Furthermore, these altered metabolic pathways may also contribute to the pathological processes of other HBV-induced diseases, such as hepatocellular carcinoma. Therefore, in this review, deciphering the molecular mechanisms of the metabolic pathways during HBV infection has shed new light on the pathological processes, and provides a new, revolutionary, potential means of directly fighting against this virus.


Impact of hepatitis B virus infection on hepatic metabolic signaling pathway
Changes in the hepatic metabolic signaling pathway induced by hepatitis B virus infection. Alterations in related signaling pathways (including glucose, lipids, nucleic acids, bile acids and vitamins) following hepatitis B virus (HBV) infection are marked and highlighted in this figure. The influence of HBV infection on vitamin D metabolism is unclear.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5037084&req=5

Figure 2: Changes in the hepatic metabolic signaling pathway induced by hepatitis B virus infection. Alterations in related signaling pathways (including glucose, lipids, nucleic acids, bile acids and vitamins) following hepatitis B virus (HBV) infection are marked and highlighted in this figure. The influence of HBV infection on vitamin D metabolism is unclear.
Mentions: In conclusion, we have systematically outlined the hepatic metabolic responses to HBV infection in this review. According to the above observations, multiple studies combining systematic approaches and molecular biological assays found that, from the molecular mechanism perspective, HBV infection interfered with the hepatic metabolic signaling pathway (Figure 2), including glucose, lipid, nucleic acid, bile acid and vitamin metabolism, ultimately resulting in metabolic derangement. Furthermore, these altered metabolic pathways may also contribute to the pathological processes of other HBV-induced diseases, such as hepatocellular carcinoma. Therefore, in this review, deciphering the molecular mechanisms of the metabolic pathways during HBV infection has shed new light on the pathological processes, and provides a new, revolutionary, potential means of directly fighting against this virus.

View Article: PubMed Central - PubMed

ABSTRACT

A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.

No MeSH data available.


Related in: MedlinePlus