Limits...
Ambient Concentrations of Metabolic Disrupting Chemicals and Children ’ s Academic Achievement in El Paso, Texas

View Article: PubMed Central - PubMed

ABSTRACT

Concerns about children’s weight have steadily risen alongside the manufacture and use of myriad chemicals in the US. One class of chemicals, known as metabolic disruptors, interfere with human endocrine and metabolic functioning and are of specific concern to children’s health and development. This article examines the effect of residential concentrations of metabolic disrupting chemicals on children’s school performance for the first time. Census tract-level ambient concentrations for known metabolic disruptors come from the US Environmental Protection Agency’s National Air Toxics Assessment. Other measures were drawn from a survey of primary caretakers of 4th and 5th grade children in El Paso Independent School District (El Paso, TX, USA). A mediation model is employed to examine two hypothetical pathways through which the ambient level of metabolic disruptors at a child’s home might affect grade point average. Results indicate that concentrations of metabolic disruptors are statistically significantly associated with lower grade point averages directly and indirectly through body mass index. Findings from this study have practical implications for environmental justice research and chemical policy reform in the US.

No MeSH data available.


Pooled Results for PROCESS Model Predicting Children’s Grade Point Average (GPA) (n = 1319).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5036707&req=5

ijerph-13-00874-f002: Pooled Results for PROCESS Model Predicting Children’s Grade Point Average (GPA) (n = 1319).

Mentions: Results are shown in Figure 2. The effect of known MDs (X) on BMI (M) were positive and statistically significant (r = 1.2191, p < 0.01). The direct effect of known MDs (X) on GPA (Y) was negative and statistically significant (r = −0.0114, p = 0.03) and this effect was mediated by the indirect effect of BMI (M) on GPA (Y), which was negative and statistically significant (r = −0.1423, p < 0.01). Because the relationship between X and M is significant and positive, higher levels of known MDs are associated with higher BMI. The direct effect of X on Y is significant and negative meaning that higher levels of known MDs are associated with lower GPA. Lastly, the indirect effects of X on Y (through M) are statistically significant and negative, meaning that higher levels of known MDs negatively impact GPA through higher BMI. When using the known/suspected MD variable, instead of the known MD variable, results were identical in terms of direction and significance. Note those effects are significant adjusting for the full suite of control variables. In terms of the control variables, mother’s education was positively associated with GPA (r = 0.0274, p < 0.01), while being male (r = −0.0965, p = 0.03) and qualifying for free or reduced priced meals (r = −0.2341, p < 0.01) were associated with lower GPAs.


Ambient Concentrations of Metabolic Disrupting Chemicals and Children ’ s Academic Achievement in El Paso, Texas
Pooled Results for PROCESS Model Predicting Children’s Grade Point Average (GPA) (n = 1319).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5036707&req=5

ijerph-13-00874-f002: Pooled Results for PROCESS Model Predicting Children’s Grade Point Average (GPA) (n = 1319).
Mentions: Results are shown in Figure 2. The effect of known MDs (X) on BMI (M) were positive and statistically significant (r = 1.2191, p < 0.01). The direct effect of known MDs (X) on GPA (Y) was negative and statistically significant (r = −0.0114, p = 0.03) and this effect was mediated by the indirect effect of BMI (M) on GPA (Y), which was negative and statistically significant (r = −0.1423, p < 0.01). Because the relationship between X and M is significant and positive, higher levels of known MDs are associated with higher BMI. The direct effect of X on Y is significant and negative meaning that higher levels of known MDs are associated with lower GPA. Lastly, the indirect effects of X on Y (through M) are statistically significant and negative, meaning that higher levels of known MDs negatively impact GPA through higher BMI. When using the known/suspected MD variable, instead of the known MD variable, results were identical in terms of direction and significance. Note those effects are significant adjusting for the full suite of control variables. In terms of the control variables, mother’s education was positively associated with GPA (r = 0.0274, p < 0.01), while being male (r = −0.0965, p = 0.03) and qualifying for free or reduced priced meals (r = −0.2341, p < 0.01) were associated with lower GPAs.

View Article: PubMed Central - PubMed

ABSTRACT

Concerns about children&rsquo;s weight have steadily risen alongside the manufacture and use of myriad chemicals in the US. One class of chemicals, known as metabolic disruptors, interfere with human endocrine and metabolic functioning and are of specific concern to children&rsquo;s health and development. This article examines the effect of residential concentrations of metabolic disrupting chemicals on children&rsquo;s school performance for the first time. Census tract-level ambient concentrations for known metabolic disruptors come from the US Environmental Protection Agency&rsquo;s National Air Toxics Assessment. Other measures were drawn from a survey of primary caretakers of 4th and 5th grade children in El Paso Independent School District (El Paso, TX, USA). A mediation model is employed to examine two hypothetical pathways through which the ambient level of metabolic disruptors at a child&rsquo;s home might affect grade point average. Results indicate that concentrations of metabolic disruptors are statistically significantly associated with lower grade point averages directly and indirectly through body mass index. Findings from this study have practical implications for environmental justice research and chemical policy reform in the US.

No MeSH data available.