Limits...
Analysis of the Influence of Construction Insulation Systems on Public Safety in China

View Article: PubMed Central - PubMed

ABSTRACT

With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.

No MeSH data available.


Numerical configuration of a representative nine-story apartment.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5036694&req=5

ijerph-13-00861-f008: Numerical configuration of a representative nine-story apartment.

Mentions: Due to the average building size in China, the researched building is a representative nine-story apartment with 30 m (length) × 22 m (width) × 27 m (height), as shown in Figure 8.


Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Numerical configuration of a representative nine-story apartment.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5036694&req=5

ijerph-13-00861-f008: Numerical configuration of a representative nine-story apartment.
Mentions: Due to the average building size in China, the researched building is a representative nine-story apartment with 30 m (length) × 22 m (width) × 27 m (height), as shown in Figure 8.

View Article: PubMed Central - PubMed

ABSTRACT

With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.

No MeSH data available.