Limits...
Viruses as nanomedicine for cancer

View Article: PubMed Central - PubMed

ABSTRACT

Oncolytic virotherapy, a type of nanomedicine in which oncolytic viruses (OVs) are used to selectively infect and lyse cancer cells, is an emerging field in cancer therapy. Some OVs exhibit a specific tropism for cancer cells, whereas others require genetic modification to enhance their binding with and entry into cancer cells. OVs both kill tumor cells and induce the host’s immune response against tumor cells. Armed with antitumor cellular molecules, antibodies, and/or in combination with anticancer drugs, OVs can accelerate the lysis of cancer cells. Among the OVs, vaccinia virus has been the focus of preclinical and clinical research because of its many favorable properties. In this review, the basic mechanisms of action of OVs are presented, including their entry, survival, tumor lysis, and immune activation, and the latest research in vaccinia virus-based virotherapy and its status as an anticancer nanomedicine in prospective clinical trials are discussed.

No MeSH data available.


Related in: MedlinePlus

Vaccinia virus armed with transgenes for cancer therapy.Notes: Insertion and deletion in the genome of the vaccinia virus makes it suitable for antitumor activity. Disruption of the viral thymidine kinase and deletion of vaccinia growth factor genes favors viral replication in cancer cells. Similarly, the virus can be equipped with various transgenes for specific activities that enhance the destruction of cancer cells.Abbreviation: scAbs, single-chain antibodies.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5036661&req=5

f3-ijn-11-4835: Vaccinia virus armed with transgenes for cancer therapy.Notes: Insertion and deletion in the genome of the vaccinia virus makes it suitable for antitumor activity. Disruption of the viral thymidine kinase and deletion of vaccinia growth factor genes favors viral replication in cancer cells. Similarly, the virus can be equipped with various transgenes for specific activities that enhance the destruction of cancer cells.Abbreviation: scAbs, single-chain antibodies.

Mentions: Although VV induces tumor cell lysis, various molecules including cytokines, single-chain antibodies (scAbs), and drugs can be engineered into VV to accelerate its antitumor activity (Figure 3). Preclinical studies have proved the efficacy of VV armed with cytokines. Most researchers used GM-CSF to increase tumor cell lysis. GM-CSF is an immune modulator that acts in a paracrine manner on various cells and recruits circulating neutrophils, monocytes, and lymphocytes to kill cancer cells.48


Viruses as nanomedicine for cancer
Vaccinia virus armed with transgenes for cancer therapy.Notes: Insertion and deletion in the genome of the vaccinia virus makes it suitable for antitumor activity. Disruption of the viral thymidine kinase and deletion of vaccinia growth factor genes favors viral replication in cancer cells. Similarly, the virus can be equipped with various transgenes for specific activities that enhance the destruction of cancer cells.Abbreviation: scAbs, single-chain antibodies.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5036661&req=5

f3-ijn-11-4835: Vaccinia virus armed with transgenes for cancer therapy.Notes: Insertion and deletion in the genome of the vaccinia virus makes it suitable for antitumor activity. Disruption of the viral thymidine kinase and deletion of vaccinia growth factor genes favors viral replication in cancer cells. Similarly, the virus can be equipped with various transgenes for specific activities that enhance the destruction of cancer cells.Abbreviation: scAbs, single-chain antibodies.
Mentions: Although VV induces tumor cell lysis, various molecules including cytokines, single-chain antibodies (scAbs), and drugs can be engineered into VV to accelerate its antitumor activity (Figure 3). Preclinical studies have proved the efficacy of VV armed with cytokines. Most researchers used GM-CSF to increase tumor cell lysis. GM-CSF is an immune modulator that acts in a paracrine manner on various cells and recruits circulating neutrophils, monocytes, and lymphocytes to kill cancer cells.48

View Article: PubMed Central - PubMed

ABSTRACT

Oncolytic virotherapy, a type of nanomedicine in which oncolytic viruses (OVs) are used to selectively infect and lyse cancer cells, is an emerging field in cancer therapy. Some OVs exhibit a specific tropism for cancer cells, whereas others require genetic modification to enhance their binding with and entry into cancer cells. OVs both kill tumor cells and induce the host’s immune response against tumor cells. Armed with antitumor cellular molecules, antibodies, and/or in combination with anticancer drugs, OVs can accelerate the lysis of cancer cells. Among the OVs, vaccinia virus has been the focus of preclinical and clinical research because of its many favorable properties. In this review, the basic mechanisms of action of OVs are presented, including their entry, survival, tumor lysis, and immune activation, and the latest research in vaccinia virus-based virotherapy and its status as an anticancer nanomedicine in prospective clinical trials are discussed.

No MeSH data available.


Related in: MedlinePlus