Limits...
TiO 2 nanotube platforms for smart drug delivery: a review

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.


Schematic diagram explaining pH-dependent drug release shape.Note: Reprinted from Jia H, Kerr LL. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study. J Appl Polym Sci. 2015;132:41750,77 with permission from John Wiley and Sons.Abbreviation: PLGA, poly(lactic-co-glycolic acid).
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5036548&req=5

f4-ijn-11-4819: Schematic diagram explaining pH-dependent drug release shape.Note: Reprinted from Jia H, Kerr LL. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study. J Appl Polym Sci. 2015;132:41750,77 with permission from John Wiley and Sons.Abbreviation: PLGA, poly(lactic-co-glycolic acid).

Mentions: TNTs have been demonstrated to be a promising platform for controlled local drug delivery, while the drug release from pure TNTs is very quick. Thus, pH-responsive polymers were applied to overcome the problem of too rapid drug release from TNTs. Jia et al reported that poly(lactic-co-glycolic acid) (PLGA) added into TNTs could improve the drug release profile.77 In their study, carprofen and lidocaine were used as the model drugs to investigate the drug release profile using PLGA/TNTs with different types of drugs. To investigate drug release from PLGA/TNTs under different pH conditions, lidocaine and carprofen releases were studied in sodium acetate buffer with pH 3.5, phosphate-buffered saline with pH 7.4, and phosphate buffer with pH 10.5, respectively, under the constant temperature of 37°C. The degree of TNT swelling was found to vary with pH values. The drug can easily diffuse into the medium through the swelling polymer during the critical time t1 as shown in Figure 4, followed the t2 time region, where the remaining drug completely releases as a result of polymer degradation.77 Furthermore, in order to reveal the mechanism and potential of lidocaine and carprofen release from TNTs, the drug release profiles were investigated on the basis of drug-loaded pure TNTs and drug-loaded PLGA/TNTs; the former was used as the control sample.77


TiO 2 nanotube platforms for smart drug delivery: a review
Schematic diagram explaining pH-dependent drug release shape.Note: Reprinted from Jia H, Kerr LL. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study. J Appl Polym Sci. 2015;132:41750,77 with permission from John Wiley and Sons.Abbreviation: PLGA, poly(lactic-co-glycolic acid).
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5036548&req=5

f4-ijn-11-4819: Schematic diagram explaining pH-dependent drug release shape.Note: Reprinted from Jia H, Kerr LL. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study. J Appl Polym Sci. 2015;132:41750,77 with permission from John Wiley and Sons.Abbreviation: PLGA, poly(lactic-co-glycolic acid).
Mentions: TNTs have been demonstrated to be a promising platform for controlled local drug delivery, while the drug release from pure TNTs is very quick. Thus, pH-responsive polymers were applied to overcome the problem of too rapid drug release from TNTs. Jia et al reported that poly(lactic-co-glycolic acid) (PLGA) added into TNTs could improve the drug release profile.77 In their study, carprofen and lidocaine were used as the model drugs to investigate the drug release profile using PLGA/TNTs with different types of drugs. To investigate drug release from PLGA/TNTs under different pH conditions, lidocaine and carprofen releases were studied in sodium acetate buffer with pH 3.5, phosphate-buffered saline with pH 7.4, and phosphate buffer with pH 10.5, respectively, under the constant temperature of 37°C. The degree of TNT swelling was found to vary with pH values. The drug can easily diffuse into the medium through the swelling polymer during the critical time t1 as shown in Figure 4, followed the t2 time region, where the remaining drug completely releases as a result of polymer degradation.77 Furthermore, in order to reveal the mechanism and potential of lidocaine and carprofen release from TNTs, the drug release profiles were investigated on the basis of drug-loaded pure TNTs and drug-loaded PLGA/TNTs; the former was used as the control sample.77

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.