Limits...
TiO 2 nanotube platforms for smart drug delivery: a review

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.


CLSM observations of MSCs adhered to different substrates after culture for 1 day.Notes: (A) Bare TNTs; (B) BMP2-loaded TNTs; (C) Gel/Chi multilayer-coated TNTs; (D) Gel/Chi multilayer-coated and BMP2-loaded TNTs; and (E) schematic illustration of the fabrication of BMP2-loaded TNTs and cellular responses. Reprinted from Acta Biomater, 8, Hu Y, Cai K, Luo Z, et al, TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells, 439–448,71 Copyright (2012), with permission from Elsevier.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; CLSM, confocal laser scanning microscope.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5036548&req=5

f3-ijn-11-4819: CLSM observations of MSCs adhered to different substrates after culture for 1 day.Notes: (A) Bare TNTs; (B) BMP2-loaded TNTs; (C) Gel/Chi multilayer-coated TNTs; (D) Gel/Chi multilayer-coated and BMP2-loaded TNTs; and (E) schematic illustration of the fabrication of BMP2-loaded TNTs and cellular responses. Reprinted from Acta Biomater, 8, Hu Y, Cai K, Luo Z, et al, TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells, 439–448,71 Copyright (2012), with permission from Elsevier.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; CLSM, confocal laser scanning microscope.

Mentions: Human and rat mesenchymal stem cells (MSCs), their adhesion, propagation, and differentiation are directly related to the diameters of TNTs, which was described as an exceptional discovery in stem cell studies.70–72 Hu et al fabricated bone morphogenetic protein 2 (BMP2)-loaded TNTs and found that cells grew well on BMP2-loaded TNTs as schematically shown in Figure 3.71 MSCs adhered to bare TNTs array, which displayed round or narrow spreading morphologies, are shown in Figure 3A. By contrast, MSCs presented well-spreading morphologies when adhered to multilayer-coated TNTs as demonstrated in Figure 3C. Compared to the morphologies of MSCs cultured onto TNTs, MSCs adhered to BMP2-loaded TNTs have no obvious difference during the growth process as shown in Figure 3B. Figure 3E schematically illustrated the preparation of BMP2-loaded TNTs, the process of cell adhesion to multilayer-coated and BMP2-loaded TNTs and cellular responses. Bauer et al found that monolayers from octadecylphosphonic acid (OPDA) could significantly enhance the attachment of MSCs to TNT surfaces and demonstrated that the surface wettability was also an important parameter for cells adhesion.73 Furthermore, for the effects of TNT geometry on osteogenesis of MSCs, lots of studies have been carried out to investigate the effects of TNT geometry on osteogenesis of MSCs, such as crystal structure of TNTs, surface chemistry, and other differentiation approaches on the response of various stem cells.


TiO 2 nanotube platforms for smart drug delivery: a review
CLSM observations of MSCs adhered to different substrates after culture for 1 day.Notes: (A) Bare TNTs; (B) BMP2-loaded TNTs; (C) Gel/Chi multilayer-coated TNTs; (D) Gel/Chi multilayer-coated and BMP2-loaded TNTs; and (E) schematic illustration of the fabrication of BMP2-loaded TNTs and cellular responses. Reprinted from Acta Biomater, 8, Hu Y, Cai K, Luo Z, et al, TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells, 439–448,71 Copyright (2012), with permission from Elsevier.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; CLSM, confocal laser scanning microscope.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5036548&req=5

f3-ijn-11-4819: CLSM observations of MSCs adhered to different substrates after culture for 1 day.Notes: (A) Bare TNTs; (B) BMP2-loaded TNTs; (C) Gel/Chi multilayer-coated TNTs; (D) Gel/Chi multilayer-coated and BMP2-loaded TNTs; and (E) schematic illustration of the fabrication of BMP2-loaded TNTs and cellular responses. Reprinted from Acta Biomater, 8, Hu Y, Cai K, Luo Z, et al, TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells, 439–448,71 Copyright (2012), with permission from Elsevier.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; CLSM, confocal laser scanning microscope.
Mentions: Human and rat mesenchymal stem cells (MSCs), their adhesion, propagation, and differentiation are directly related to the diameters of TNTs, which was described as an exceptional discovery in stem cell studies.70–72 Hu et al fabricated bone morphogenetic protein 2 (BMP2)-loaded TNTs and found that cells grew well on BMP2-loaded TNTs as schematically shown in Figure 3.71 MSCs adhered to bare TNTs array, which displayed round or narrow spreading morphologies, are shown in Figure 3A. By contrast, MSCs presented well-spreading morphologies when adhered to multilayer-coated TNTs as demonstrated in Figure 3C. Compared to the morphologies of MSCs cultured onto TNTs, MSCs adhered to BMP2-loaded TNTs have no obvious difference during the growth process as shown in Figure 3B. Figure 3E schematically illustrated the preparation of BMP2-loaded TNTs, the process of cell adhesion to multilayer-coated and BMP2-loaded TNTs and cellular responses. Bauer et al found that monolayers from octadecylphosphonic acid (OPDA) could significantly enhance the attachment of MSCs to TNT surfaces and demonstrated that the surface wettability was also an important parameter for cells adhesion.73 Furthermore, for the effects of TNT geometry on osteogenesis of MSCs, lots of studies have been carried out to investigate the effects of TNT geometry on osteogenesis of MSCs, such as crystal structure of TNTs, surface chemistry, and other differentiation approaches on the response of various stem cells.

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.