Limits...
TiO 2 nanotube platforms for smart drug delivery: a review

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.


Related in: MedlinePlus

The surface functionalization of TNTs with BMP2 for cell proliferation and differentiation.Notes: (A) Schematic illustration of the conjugation of BMP2 onto TNTs. Fluorescence images of MSCs adhered to (B) Ti, (C) BMP2-PDOP-Ti, (D) 30 nm TNTs, (E) BMP2-PDOP-30 nm TNTs. Cells were stained with actin filaments (red), cell nuclei (blue), and vinculin (green) in this study. Reprinted with permission from Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12:1097–1105.104 Copyright (2011) American Chemical Society.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; PDOP, polydopamine.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5036548&req=5

f10-ijn-11-4819: The surface functionalization of TNTs with BMP2 for cell proliferation and differentiation.Notes: (A) Schematic illustration of the conjugation of BMP2 onto TNTs. Fluorescence images of MSCs adhered to (B) Ti, (C) BMP2-PDOP-Ti, (D) 30 nm TNTs, (E) BMP2-PDOP-30 nm TNTs. Cells were stained with actin filaments (red), cell nuclei (blue), and vinculin (green) in this study. Reprinted with permission from Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12:1097–1105.104 Copyright (2011) American Chemical Society.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; PDOP, polydopamine.

Mentions: To enhance the osseointegration capability of orthopedic implants within the microenvironment surrounding the bone, the implant surface must promote the functions of different cell species, including osteoblasts and stem cells, as well as enhance bone healing.103 Lai et al reported BMP2 loaded inside TNTs could promote MSC proliferation and differentiation, extending the scope of stem cell engineering and cell-based therapies.104 To investigate the adhesion and proliferation of MSCs, the cytoskeleton morphology of MSCs was visualized with a triple staining of actin, vinculin, and nucleus by immunocytochemistry as shown in Figure 10. The result suggested that the conjugation of BMP2 onto TNTs promoted cell proliferation (Figure 10B–E). The diameters of TNTs were able to affect the adhesion, spreading, and differentiation of MSCs, and specifically, larger diameters could promote the protein adsorption.104–108 Therefore, the physical dimension of TNTs is an important factor for modulating biological functions in bone cells and tissue engineering.


TiO 2 nanotube platforms for smart drug delivery: a review
The surface functionalization of TNTs with BMP2 for cell proliferation and differentiation.Notes: (A) Schematic illustration of the conjugation of BMP2 onto TNTs. Fluorescence images of MSCs adhered to (B) Ti, (C) BMP2-PDOP-Ti, (D) 30 nm TNTs, (E) BMP2-PDOP-30 nm TNTs. Cells were stained with actin filaments (red), cell nuclei (blue), and vinculin (green) in this study. Reprinted with permission from Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12:1097–1105.104 Copyright (2011) American Chemical Society.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; PDOP, polydopamine.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5036548&req=5

f10-ijn-11-4819: The surface functionalization of TNTs with BMP2 for cell proliferation and differentiation.Notes: (A) Schematic illustration of the conjugation of BMP2 onto TNTs. Fluorescence images of MSCs adhered to (B) Ti, (C) BMP2-PDOP-Ti, (D) 30 nm TNTs, (E) BMP2-PDOP-30 nm TNTs. Cells were stained with actin filaments (red), cell nuclei (blue), and vinculin (green) in this study. Reprinted with permission from Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12:1097–1105.104 Copyright (2011) American Chemical Society.Abbreviations: BMP2, bone morphogenetic protein 2; TNT, titania nanotube; MSCs, mesenchymal stem cells; PDOP, polydopamine.
Mentions: To enhance the osseointegration capability of orthopedic implants within the microenvironment surrounding the bone, the implant surface must promote the functions of different cell species, including osteoblasts and stem cells, as well as enhance bone healing.103 Lai et al reported BMP2 loaded inside TNTs could promote MSC proliferation and differentiation, extending the scope of stem cell engineering and cell-based therapies.104 To investigate the adhesion and proliferation of MSCs, the cytoskeleton morphology of MSCs was visualized with a triple staining of actin, vinculin, and nucleus by immunocytochemistry as shown in Figure 10. The result suggested that the conjugation of BMP2 onto TNTs promoted cell proliferation (Figure 10B–E). The diameters of TNTs were able to affect the adhesion, spreading, and differentiation of MSCs, and specifically, larger diameters could promote the protein adsorption.104–108 Therefore, the physical dimension of TNTs is an important factor for modulating biological functions in bone cells and tissue engineering.

View Article: PubMed Central - PubMed

ABSTRACT

Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

No MeSH data available.


Related in: MedlinePlus