Limits...
Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants

View Article: PubMed Central - PubMed

ABSTRACT

Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.

No MeSH data available.


Main CNT functionalization methods.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5036478&req=5

Figure 1: Main CNT functionalization methods.

Mentions: Based on the results of the significant amount of research, the methodology to exfoliate the bundled structures of the CNTs and disperse them in solvents has been established in which the engineering of the surface of the CNTs using small molecules or polymers in a covalent or non-covalent way is the major strategy (figure 1) [13–15].


Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants
Main CNT functionalization methods.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5036478&req=5

Figure 1: Main CNT functionalization methods.
Mentions: Based on the results of the significant amount of research, the methodology to exfoliate the bundled structures of the CNTs and disperse them in solvents has been established in which the engineering of the surface of the CNTs using small molecules or polymers in a covalent or non-covalent way is the major strategy (figure 1) [13–15].

View Article: PubMed Central - PubMed

ABSTRACT

Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.

No MeSH data available.