Limits...
Monitoring Perinatal Gut Microbiota in Mouse Models by Mass Spectrometry Approaches: Parental Genetic Background and Breastfeeding Effects

View Article: PubMed Central - PubMed

ABSTRACT

At birth, contact with external stimuli, such as nutrients derived from food, is necessary to modulate the symbiotic balance between commensal and pathogenic bacteria, protect against bacterial dysbiosis, and initiate the development of the mucosal immune response. Among a variety of different feeding patterns, breastfeeding represents the best modality. In fact, the capacity of breast milk to modulate the composition of infants’ gut microbiota leads to beneficial effects on their health. In this study, we used newborn mice as a model to evaluate the effect of parental genetic background (i.e., IgA-producing mice and IgA-deficient mice) and feeding modulation (i.e., maternal feeding and cross-feeding) on the onset and shaping of gut microbiota after birth. To investigate these topics, we used either a culturomic approach that employed Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MS), or bottom–up Liquid Chromatography, with subsequent MSMS shotgun metaproteomic analysis that compared and assembled results of the two techniques. We found that the microbial community was enriched by lactic acid bacteria when pups were breastfed by wild-type (WT) mothers, while IgA-deficient milk led to an increase in the opportunistic bacterial pathogen (OBP) population. Cross-feeding results suggested that IgA supplementation promoted the exclusion of some OBPs and the temporary appearance of beneficial species in pups fed by WT foster mothers. Our results show that both techniques yield a picture of microbiota from different angles and with varying depths. In particular, our metaproteomic pipeline was found to be a reliable tool in the description of microbiota. Data from these studies are available via ProteomeXchange, with identifier PXD004033.

No MeSH data available.


Axenic culture-based analysis of mouse gut microbiota at the species level. (A) A histogram representing the relative abundance of mouse gut microbiota (MGM) species from mothers’ fecal contents, and Balb/c and Rag2ko baby mice intestinal contents at 3, 7, 14, and 21 days. (B) Pie charts showing the distribution of species in the MGM of offspring at days 3, and 7. Phyla are identified by color shades, specifically blue for Firmicutes and orange for Proteobacteria.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5036385&req=5

Figure 2: Axenic culture-based analysis of mouse gut microbiota at the species level. (A) A histogram representing the relative abundance of mouse gut microbiota (MGM) species from mothers’ fecal contents, and Balb/c and Rag2ko baby mice intestinal contents at 3, 7, 14, and 21 days. (B) Pie charts showing the distribution of species in the MGM of offspring at days 3, and 7. Phyla are identified by color shades, specifically blue for Firmicutes and orange for Proteobacteria.

Mentions: The MGM of WT and Rag2ko mothers displayed similar levels of Firmicutes and Proteobacteria, with a relative distribution of approximately 75 and 25%, respectively. The composition of the gut microbiota of baby mice from Balb/c and Rag2ko mothers appeared quite similar to that of their respective parents after 3 days of life, even if the predominance of Firmicutes over Proteobacteria was more marked in Balb/c than in Rag2ko mice (95 and 75%, respectively). At the following time points (from 7 to 21 days) in babies of Balb/c mothers, MGM composition rapidly stabilized with approximately 50% Firmicutes and 50% Proteobacteria. However, in pups born to Rag2ko females, it gradually changed with a progressive disappearance of Firmicutes and an increase in Proteobacteria levels eventually accounting for 100% of the MGM (Figure 2A).


Monitoring Perinatal Gut Microbiota in Mouse Models by Mass Spectrometry Approaches: Parental Genetic Background and Breastfeeding Effects
Axenic culture-based analysis of mouse gut microbiota at the species level. (A) A histogram representing the relative abundance of mouse gut microbiota (MGM) species from mothers’ fecal contents, and Balb/c and Rag2ko baby mice intestinal contents at 3, 7, 14, and 21 days. (B) Pie charts showing the distribution of species in the MGM of offspring at days 3, and 7. Phyla are identified by color shades, specifically blue for Firmicutes and orange for Proteobacteria.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5036385&req=5

Figure 2: Axenic culture-based analysis of mouse gut microbiota at the species level. (A) A histogram representing the relative abundance of mouse gut microbiota (MGM) species from mothers’ fecal contents, and Balb/c and Rag2ko baby mice intestinal contents at 3, 7, 14, and 21 days. (B) Pie charts showing the distribution of species in the MGM of offspring at days 3, and 7. Phyla are identified by color shades, specifically blue for Firmicutes and orange for Proteobacteria.
Mentions: The MGM of WT and Rag2ko mothers displayed similar levels of Firmicutes and Proteobacteria, with a relative distribution of approximately 75 and 25%, respectively. The composition of the gut microbiota of baby mice from Balb/c and Rag2ko mothers appeared quite similar to that of their respective parents after 3 days of life, even if the predominance of Firmicutes over Proteobacteria was more marked in Balb/c than in Rag2ko mice (95 and 75%, respectively). At the following time points (from 7 to 21 days) in babies of Balb/c mothers, MGM composition rapidly stabilized with approximately 50% Firmicutes and 50% Proteobacteria. However, in pups born to Rag2ko females, it gradually changed with a progressive disappearance of Firmicutes and an increase in Proteobacteria levels eventually accounting for 100% of the MGM (Figure 2A).

View Article: PubMed Central - PubMed

ABSTRACT

At birth, contact with external stimuli, such as nutrients derived from food, is necessary to modulate the symbiotic balance between commensal and pathogenic bacteria, protect against bacterial dysbiosis, and initiate the development of the mucosal immune response. Among a variety of different feeding patterns, breastfeeding represents the best modality. In fact, the capacity of breast milk to modulate the composition of infants’ gut microbiota leads to beneficial effects on their health. In this study, we used newborn mice as a model to evaluate the effect of parental genetic background (i.e., IgA-producing mice and IgA-deficient mice) and feeding modulation (i.e., maternal feeding and cross-feeding) on the onset and shaping of gut microbiota after birth. To investigate these topics, we used either a culturomic approach that employed Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MS), or bottom–up Liquid Chromatography, with subsequent MSMS shotgun metaproteomic analysis that compared and assembled results of the two techniques. We found that the microbial community was enriched by lactic acid bacteria when pups were breastfed by wild-type (WT) mothers, while IgA-deficient milk led to an increase in the opportunistic bacterial pathogen (OBP) population. Cross-feeding results suggested that IgA supplementation promoted the exclusion of some OBPs and the temporary appearance of beneficial species in pups fed by WT foster mothers. Our results show that both techniques yield a picture of microbiota from different angles and with varying depths. In particular, our metaproteomic pipeline was found to be a reliable tool in the description of microbiota. Data from these studies are available via ProteomeXchange, with identifier PXD004033.

No MeSH data available.