Limits...
Highly conductive and pure gold nanostructures grown by electron beam induced deposition

View Article: PubMed Central - PubMed

ABSTRACT

This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

No MeSH data available.


Height and volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey).An explanation of the calculation is shown in Supplement 6.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5035929&req=5

f5: Height and volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey).An explanation of the calculation is shown in Supplement 6.

Mentions: Figure 5 illustrates the height of the deposited gold structure, as obtained at different levels of oxidative enhancement. Except for the varying water injection, all other deposition parameters were maintained to be identical. Every height bar in Fig. 5 also reflects the volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey), based on the previously calculated vol. %. In short, the height of the bar represents the deposition rate, and the distribution of the areas for gold (amber), oxygen (blue), and carbon (grey) reflects their volume contribution.


Highly conductive and pure gold nanostructures grown by electron beam induced deposition
Height and volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey).An explanation of the calculation is shown in Supplement 6.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5035929&req=5

f5: Height and volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey).An explanation of the calculation is shown in Supplement 6.
Mentions: Figure 5 illustrates the height of the deposited gold structure, as obtained at different levels of oxidative enhancement. Except for the varying water injection, all other deposition parameters were maintained to be identical. Every height bar in Fig. 5 also reflects the volume contribution of the deposited gold (amber), oxygen (blue), and carbon (grey), based on the previously calculated vol. %. In short, the height of the bar represents the deposition rate, and the distribution of the areas for gold (amber), oxygen (blue), and carbon (grey) reflects their volume contribution.

View Article: PubMed Central - PubMed

ABSTRACT

This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

No MeSH data available.