Limits...
Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture.

Crockett ET, Remelius C, Hess K, Al-Ghawi H - BMC Clin Pathol (2004)

Bottom Line: Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP.Comparisons between groups were made by applying ANOVA and student t-test analysis.RESULTS: CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I mice.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA. ecrocket@msu.edu

ABSTRACT
BACKGROUND: Neutrophil infiltration is one of the critical cellular components of an inflammatory response during peritonitis. The adhesion molecules, P-selectin and intercellular adhesion molecule (ICAM)-1, mediate neutrophil-endothelial cell interactions and the subsequent neutrophil transendothelial migration during the inflammatory response. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy, suggesting that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the objective of this study was to determine the role of P-selectin and ICAM-1 in neutrophil infiltration into the peritoneal cavity during early and late phases of peritonitis. METHODS: Peritonitis was induced in both male wild-type and P-selectin/ICAM-1 double deficient (P/I ) mice by cecal ligation-puncture (CLP). Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP. The total leukocyte and neutrophil contents were determined, and neutrophils were identified with the aid of in situ immunohistochemical staining. Comparisons between groups were made by applying ANOVA and student t-test analysis. RESULTS: CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I mice. Additionally, CLP caused a significant neutrophil infiltration into the peritoneal cavity that was detected in both groups of mice. However, neutrophil infiltration in the P/I mice at 6 hours of CLP was significantly lower than the corresponding wild-type mice, which reached a similar magnitude at 24 hours of CLP. In contrast, in peritonitis induced by intraperitoneal inoculation of 2% glycogen, no significant difference in neutrophil infiltration was observed between the P/I and wild-type mice at 6 hours of peritonitis. CONCLUSIONS: The data suggest that alternative adhesion pathway(s) independent of P-selectin and ICAM-1 can participate in neutrophil migration during peritonitis and that the mode of stimuli and duration of the injury modulate the neutrophil infiltration.

No MeSH data available.


Related in: MedlinePlus

Staining of cytospin preparations from peritoneal lavage. The top three rows show the Wright staining of the cellular components of peritoneal lavages. Cellular preps from the control (CT) mice of both WT and P/I  groups demonstrating mononuclear cells as the predominant cell types (left column: WT CT, P/I CT). Control group represents mice that were not subjected to sham or CLP experimental procedures. CLP induced a significant neutrophil infiltration (arrows) at 6 and 24 hours in both WT (top row: WT 6 h, WT 24 h) and P/I  mice (second row: P/I 6 h, P/I 24 h). Neutrophils were also the predominant cell type at 6 hours of 2% glycogen-induced peritonitis in WT and P/I  mice (third row: WT 6 h, P/I 6 h). The lower row represents immunoperoxidase staining of the cells (CLP mice) using an anti-neutrophil antibody specific to mouse, verifying the neutrophils as stained in brown color (WT 6 h, P/I 6 h).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC503395&req=5

Figure 3: Staining of cytospin preparations from peritoneal lavage. The top three rows show the Wright staining of the cellular components of peritoneal lavages. Cellular preps from the control (CT) mice of both WT and P/I groups demonstrating mononuclear cells as the predominant cell types (left column: WT CT, P/I CT). Control group represents mice that were not subjected to sham or CLP experimental procedures. CLP induced a significant neutrophil infiltration (arrows) at 6 and 24 hours in both WT (top row: WT 6 h, WT 24 h) and P/I mice (second row: P/I 6 h, P/I 24 h). Neutrophils were also the predominant cell type at 6 hours of 2% glycogen-induced peritonitis in WT and P/I mice (third row: WT 6 h, P/I 6 h). The lower row represents immunoperoxidase staining of the cells (CLP mice) using an anti-neutrophil antibody specific to mouse, verifying the neutrophils as stained in brown color (WT 6 h, P/I 6 h).

Mentions: Sepsis induced by CLP (i.e., 6 and 24 hr) caused a significant leukocyte infiltration into the peritoneal cavities of both wild-type and P/I mice when compared to their corresponding sham group (Figure 2A). The peritoneal leukocyte influx consisted predominantly of neutrophils as identified by Wright staining as well as in situ immunohistochemical staining using specific monoclonal antibody to mouse neutrophil (Figure 3). As shown in Figure 2B, a significantly greater number of neutrophils infiltrated into the peritoneal cavities of wild-type mice than those of the P/I mice at 6 hours after CLP, which reached to comparable levels at 24 hours of CLP. Although a fewer number of neutrophils were present in the peritoneal cavities of P/I mice, the ratio of neutrophil infiltration (i.e. ratio = infiltrated peritoneal neutrophils in response to CLP/neutrophils normally present in peritoneal cavity of the control mouse) was significantly higher in the P/I mice than those of wild-type mice. There was a 16-fold and a 33-fold increase in the ratio of peritoneal neutrophils in wild-type at 6 and 24 hours after CLP, respectively. However, in P/I mice, the peritoneal neutrophil infiltration ratio increased 54-fold and 204-fold at 6 and 24 hours after CLP, respectively.


Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture.

Crockett ET, Remelius C, Hess K, Al-Ghawi H - BMC Clin Pathol (2004)

Staining of cytospin preparations from peritoneal lavage. The top three rows show the Wright staining of the cellular components of peritoneal lavages. Cellular preps from the control (CT) mice of both WT and P/I  groups demonstrating mononuclear cells as the predominant cell types (left column: WT CT, P/I CT). Control group represents mice that were not subjected to sham or CLP experimental procedures. CLP induced a significant neutrophil infiltration (arrows) at 6 and 24 hours in both WT (top row: WT 6 h, WT 24 h) and P/I  mice (second row: P/I 6 h, P/I 24 h). Neutrophils were also the predominant cell type at 6 hours of 2% glycogen-induced peritonitis in WT and P/I  mice (third row: WT 6 h, P/I 6 h). The lower row represents immunoperoxidase staining of the cells (CLP mice) using an anti-neutrophil antibody specific to mouse, verifying the neutrophils as stained in brown color (WT 6 h, P/I 6 h).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC503395&req=5

Figure 3: Staining of cytospin preparations from peritoneal lavage. The top three rows show the Wright staining of the cellular components of peritoneal lavages. Cellular preps from the control (CT) mice of both WT and P/I groups demonstrating mononuclear cells as the predominant cell types (left column: WT CT, P/I CT). Control group represents mice that were not subjected to sham or CLP experimental procedures. CLP induced a significant neutrophil infiltration (arrows) at 6 and 24 hours in both WT (top row: WT 6 h, WT 24 h) and P/I mice (second row: P/I 6 h, P/I 24 h). Neutrophils were also the predominant cell type at 6 hours of 2% glycogen-induced peritonitis in WT and P/I mice (third row: WT 6 h, P/I 6 h). The lower row represents immunoperoxidase staining of the cells (CLP mice) using an anti-neutrophil antibody specific to mouse, verifying the neutrophils as stained in brown color (WT 6 h, P/I 6 h).
Mentions: Sepsis induced by CLP (i.e., 6 and 24 hr) caused a significant leukocyte infiltration into the peritoneal cavities of both wild-type and P/I mice when compared to their corresponding sham group (Figure 2A). The peritoneal leukocyte influx consisted predominantly of neutrophils as identified by Wright staining as well as in situ immunohistochemical staining using specific monoclonal antibody to mouse neutrophil (Figure 3). As shown in Figure 2B, a significantly greater number of neutrophils infiltrated into the peritoneal cavities of wild-type mice than those of the P/I mice at 6 hours after CLP, which reached to comparable levels at 24 hours of CLP. Although a fewer number of neutrophils were present in the peritoneal cavities of P/I mice, the ratio of neutrophil infiltration (i.e. ratio = infiltrated peritoneal neutrophils in response to CLP/neutrophils normally present in peritoneal cavity of the control mouse) was significantly higher in the P/I mice than those of wild-type mice. There was a 16-fold and a 33-fold increase in the ratio of peritoneal neutrophils in wild-type at 6 and 24 hours after CLP, respectively. However, in P/I mice, the peritoneal neutrophil infiltration ratio increased 54-fold and 204-fold at 6 and 24 hours after CLP, respectively.

Bottom Line: Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP.Comparisons between groups were made by applying ANOVA and student t-test analysis.RESULTS: CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I mice.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA. ecrocket@msu.edu

ABSTRACT
BACKGROUND: Neutrophil infiltration is one of the critical cellular components of an inflammatory response during peritonitis. The adhesion molecules, P-selectin and intercellular adhesion molecule (ICAM)-1, mediate neutrophil-endothelial cell interactions and the subsequent neutrophil transendothelial migration during the inflammatory response. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy, suggesting that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the objective of this study was to determine the role of P-selectin and ICAM-1 in neutrophil infiltration into the peritoneal cavity during early and late phases of peritonitis. METHODS: Peritonitis was induced in both male wild-type and P-selectin/ICAM-1 double deficient (P/I ) mice by cecal ligation-puncture (CLP). Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP. The total leukocyte and neutrophil contents were determined, and neutrophils were identified with the aid of in situ immunohistochemical staining. Comparisons between groups were made by applying ANOVA and student t-test analysis. RESULTS: CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I mice. Additionally, CLP caused a significant neutrophil infiltration into the peritoneal cavity that was detected in both groups of mice. However, neutrophil infiltration in the P/I mice at 6 hours of CLP was significantly lower than the corresponding wild-type mice, which reached a similar magnitude at 24 hours of CLP. In contrast, in peritonitis induced by intraperitoneal inoculation of 2% glycogen, no significant difference in neutrophil infiltration was observed between the P/I and wild-type mice at 6 hours of peritonitis. CONCLUSIONS: The data suggest that alternative adhesion pathway(s) independent of P-selectin and ICAM-1 can participate in neutrophil migration during peritonitis and that the mode of stimuli and duration of the injury modulate the neutrophil infiltration.

No MeSH data available.


Related in: MedlinePlus