Limits...
Treatment with Rhus tripartita extract curtails isoproterenol-elicited cardiotoxicity and oxidative stress in rats

View Article: PubMed Central - PubMed

ABSTRACT

Background: Consumption of plant-derived nutraceuticals and crude drugs in traditional medicine is widely believed to confer beneficial effects in thwarting the progression of cardiovascular diseases. Rhus tripartita (family Anacardiaceae) has been traditionally used to treat a wide range of ailments.

Methods: In the present study we investigated the protective effects of an alcoholic extract of the stem part of Rhus tripartita male genotype (RTSM) on experimentally induced myocardial injury in rats. To this end, cardiac injury was induced by administration of isoproterenol (ISO) and serum enzyme markers, lipid profiles and cardiac tissue redox status were determined following RTSM treatment (250 and 500 mg/kg).

1234566: As a result, RTSM treatment significantly mitigated ISO-triggered upregulation of cardiac-specific markers of injury creatine kinase and lactate dehydrogenase. RTSM treatment significantly attenuated ISO-induced increase in serum cholesterol and triglycerides as well alterations in serum lipoproteins. Determination of oxidative balance showed that RTSM treatment significantly blunted ISO-induced increase in malondialdehyde and decrease in nonprotein sulfhydryl in cardiac tissue. Six compounds were isolated and identified as gallocatechin , taxifolin , myricetin-3-O-β-glucoside , catechin , epicatechin , and 3′,8-binaringenin . Compound was isolated for the first time from the stem part of Rhus tripartita. Furthermore, RTSM treatment enhanced the survival fraction of cardiac cells exposed to oxidative stress in vitro.

Conclusion: We conclude that the antioxidant properties of RTSM treatment underpin its cardioprotective pharmacological effects, thus, providing biological evidence for the treatment of cardiovascular diseases using Rhus tripartita in indigenous medicine.

No MeSH data available.


Effect of RTSM on the level of MDA in the heart tissue of the rats treated with Isoproteronol. All value represent mean ± SESM **P < 0.01, ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test. aAs compared with control group. bAs compared with only ISO only groups
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5017009&req=5

Fig1: Effect of RTSM on the level of MDA in the heart tissue of the rats treated with Isoproteronol. All value represent mean ± SESM **P < 0.01, ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test. aAs compared with control group. bAs compared with only ISO only groups

Mentions: A further series of experiments addressed the possible role of redox sensitivity of RTSM treatment in ameliorating ISO-induced cardiotoxicity. To this end, we determined malondialdehyde (MDA) levels in cardiac tissue isolated from rats administered with ISO. As a result, ISO administration significantly upregulated tissue MDA levels, an effect that was significantly and dose-dependently mitigated by pretreatment with RTSM (Fig. 1).Fig. 1


Treatment with Rhus tripartita extract curtails isoproterenol-elicited cardiotoxicity and oxidative stress in rats
Effect of RTSM on the level of MDA in the heart tissue of the rats treated with Isoproteronol. All value represent mean ± SESM **P < 0.01, ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test. aAs compared with control group. bAs compared with only ISO only groups
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5017009&req=5

Fig1: Effect of RTSM on the level of MDA in the heart tissue of the rats treated with Isoproteronol. All value represent mean ± SESM **P < 0.01, ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test. aAs compared with control group. bAs compared with only ISO only groups
Mentions: A further series of experiments addressed the possible role of redox sensitivity of RTSM treatment in ameliorating ISO-induced cardiotoxicity. To this end, we determined malondialdehyde (MDA) levels in cardiac tissue isolated from rats administered with ISO. As a result, ISO administration significantly upregulated tissue MDA levels, an effect that was significantly and dose-dependently mitigated by pretreatment with RTSM (Fig. 1).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Background: Consumption of plant-derived nutraceuticals and crude drugs in traditional medicine is widely believed to confer beneficial effects in thwarting the progression of cardiovascular diseases. Rhus tripartita (family Anacardiaceae) has been traditionally used to treat a wide range of ailments.

Methods: In the present study we investigated the protective effects of an alcoholic extract of the stem part of Rhus tripartita male genotype (RTSM) on experimentally induced myocardial injury in rats. To this end, cardiac injury was induced by administration of isoproterenol (ISO) and serum enzyme markers, lipid profiles and cardiac tissue redox status were determined following RTSM treatment (250 and 500&nbsp;mg/kg).

1234566: As a result, RTSM treatment significantly mitigated ISO-triggered upregulation of cardiac-specific markers of injury creatine kinase and lactate dehydrogenase. RTSM treatment significantly attenuated ISO-induced increase in serum cholesterol and triglycerides as well alterations in serum lipoproteins. Determination of oxidative balance showed that RTSM treatment significantly blunted ISO-induced increase in malondialdehyde and decrease in nonprotein sulfhydryl in cardiac tissue. Six compounds were isolated and identified as gallocatechin , taxifolin , myricetin-3-O-&beta;-glucoside , catechin , epicatechin , and 3&prime;,8-binaringenin . Compound was isolated for the first time from the stem part of Rhus tripartita. Furthermore, RTSM treatment enhanced the survival fraction of cardiac cells exposed to oxidative stress in vitro.

Conclusion: We conclude that the antioxidant properties of RTSM treatment underpin its cardioprotective pharmacological effects, thus, providing biological evidence for the treatment of cardiovascular diseases using Rhus tripartita in indigenous medicine.

No MeSH data available.