Limits...
Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2 T , a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes

View Article: PubMed Central - PubMed

ABSTRACT

Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.

No MeSH data available.


Neighbour joining tree based on 16S rRNA gene sequences showing the phylogenetic position of D. alkaliphilus AHT2T to other species within the Deltaproteobacteria class. The Firmicutes were used as an outgroup and subsequently pruned from the tree. The black dots indicate a bootstrap value between 80 and 100 %. The scale bar indicates a 1 % sequence difference. The tree was constructed with the ARB software package [37] and the SILVA database [19]. The bootstrap values were calculated using MEGA-6 [38]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5016858&req=5

Fig2: Neighbour joining tree based on 16S rRNA gene sequences showing the phylogenetic position of D. alkaliphilus AHT2T to other species within the Deltaproteobacteria class. The Firmicutes were used as an outgroup and subsequently pruned from the tree. The black dots indicate a bootstrap value between 80 and 100 %. The scale bar indicates a 1 % sequence difference. The tree was constructed with the ARB software package [37] and the SILVA database [19]. The bootstrap values were calculated using MEGA-6 [38]

Mentions: D. alkaliphilus AHT2T is the type strain of the Desulfurivibrio alkaliphilus species and was isolated from a mixed sediment sample from eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Libyan Desert (Egypt) [3]. The cells are Gram-negative, non-motile, curved rods that do not form spores (Fig. 1). D. alkaliphilus AHT2T tolerates sodium carbonate concentrations ranging from 0.2 - 2.5 M total Na+ and grows within a pH range of 8.5 - 10.3 (optimum at pH 9.5) [3]. Phylogenetic analysis showed that the strain belongs to the family Desulfobulbaceae within the Deltaproteobacteria and is most closely related to a, so far undescribed, haloalkaliphilic chemoautotrophic sulfur-disproportionator within the same genus: Desulfurivibrio sp. strain AMeS2 [2]. Strains AMeS2 and AHT2T are, so far, the only known representatives of the Desulfurivibrio genus (Fig. 2). The closest sequenced relative to this novel genus, is another soda lake isolate delta proteobacterium sp. MLMS-1, which has been enriched as an arsenate-dependent sulfide oxidizer [4]. D. alkaliphilus AHT2T is able to reduce thiosulfate and elemental sulfur [3] and plays a role in the reductive sulfur cycle in soda lake environments [1]. D. alkaliphilus AHT2T is also capable of chemolithoautotrophic growth through the disproportionation of elemental sulfur under alkaline pH conditions without iron(III) oxides [2], which are normally required by neutrophilic sulfur disproportionators. More classifications and features are listed in Table 1.Fig. 1


Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2 T , a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes
Neighbour joining tree based on 16S rRNA gene sequences showing the phylogenetic position of D. alkaliphilus AHT2T to other species within the Deltaproteobacteria class. The Firmicutes were used as an outgroup and subsequently pruned from the tree. The black dots indicate a bootstrap value between 80 and 100 %. The scale bar indicates a 1 % sequence difference. The tree was constructed with the ARB software package [37] and the SILVA database [19]. The bootstrap values were calculated using MEGA-6 [38]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5016858&req=5

Fig2: Neighbour joining tree based on 16S rRNA gene sequences showing the phylogenetic position of D. alkaliphilus AHT2T to other species within the Deltaproteobacteria class. The Firmicutes were used as an outgroup and subsequently pruned from the tree. The black dots indicate a bootstrap value between 80 and 100 %. The scale bar indicates a 1 % sequence difference. The tree was constructed with the ARB software package [37] and the SILVA database [19]. The bootstrap values were calculated using MEGA-6 [38]
Mentions: D. alkaliphilus AHT2T is the type strain of the Desulfurivibrio alkaliphilus species and was isolated from a mixed sediment sample from eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Libyan Desert (Egypt) [3]. The cells are Gram-negative, non-motile, curved rods that do not form spores (Fig. 1). D. alkaliphilus AHT2T tolerates sodium carbonate concentrations ranging from 0.2 - 2.5 M total Na+ and grows within a pH range of 8.5 - 10.3 (optimum at pH 9.5) [3]. Phylogenetic analysis showed that the strain belongs to the family Desulfobulbaceae within the Deltaproteobacteria and is most closely related to a, so far undescribed, haloalkaliphilic chemoautotrophic sulfur-disproportionator within the same genus: Desulfurivibrio sp. strain AMeS2 [2]. Strains AMeS2 and AHT2T are, so far, the only known representatives of the Desulfurivibrio genus (Fig. 2). The closest sequenced relative to this novel genus, is another soda lake isolate delta proteobacterium sp. MLMS-1, which has been enriched as an arsenate-dependent sulfide oxidizer [4]. D. alkaliphilus AHT2T is able to reduce thiosulfate and elemental sulfur [3] and plays a role in the reductive sulfur cycle in soda lake environments [1]. D. alkaliphilus AHT2T is also capable of chemolithoautotrophic growth through the disproportionation of elemental sulfur under alkaline pH conditions without iron(III) oxides [2], which are normally required by neutrophilic sulfur disproportionators. More classifications and features are listed in Table 1.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.

No MeSH data available.