Limits...
Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China

View Article: PubMed Central - PubMed

ABSTRACT

The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.

No MeSH data available.


Colletotrichum sichuanensis (from holotype).(a,b) Colonies on PDA at 7 days, upper (a) and reverse (b); (c,d) conidia; (e) conidiogenous cells; (f,g) conidial appressoria; (h–j) mycelial appressoria; (k) ascomata on PDA; (l) peridium; (m–o) asci; (p,q) ascospores. Scale bars: c, d, f–j, p, q = 10 μm; e, l, m, o = 20 μm; n = 40 μm
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5016793&req=5

f5: Colletotrichum sichuanensis (from holotype).(a,b) Colonies on PDA at 7 days, upper (a) and reverse (b); (c,d) conidia; (e) conidiogenous cells; (f,g) conidial appressoria; (h–j) mycelial appressoria; (k) ascomata on PDA; (l) peridium; (m–o) asci; (p,q) ascospores. Scale bars: c, d, f–j, p, q = 10 μm; e, l, m, o = 20 μm; n = 40 μm

Mentions: Colletotrichum sichuanensis G.S. Gong & F.L. Liu, sp. nov. (Fig. 5).


Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China
Colletotrichum sichuanensis (from holotype).(a,b) Colonies on PDA at 7 days, upper (a) and reverse (b); (c,d) conidia; (e) conidiogenous cells; (f,g) conidial appressoria; (h–j) mycelial appressoria; (k) ascomata on PDA; (l) peridium; (m–o) asci; (p,q) ascospores. Scale bars: c, d, f–j, p, q = 10 μm; e, l, m, o = 20 μm; n = 40 μm
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5016793&req=5

f5: Colletotrichum sichuanensis (from holotype).(a,b) Colonies on PDA at 7 days, upper (a) and reverse (b); (c,d) conidia; (e) conidiogenous cells; (f,g) conidial appressoria; (h–j) mycelial appressoria; (k) ascomata on PDA; (l) peridium; (m–o) asci; (p,q) ascospores. Scale bars: c, d, f–j, p, q = 10 μm; e, l, m, o = 20 μm; n = 40 μm
Mentions: Colletotrichum sichuanensis G.S. Gong & F.L. Liu, sp. nov. (Fig. 5).

View Article: PubMed Central - PubMed

ABSTRACT

The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.

No MeSH data available.