Limits...
Evaluating the influence of life ‐ history characteristics on genetic structure: a comparison of small mammals inhabiting complex agricultural landscapes

View Article: PubMed Central - PubMed

ABSTRACT

Conversion of formerly continuous native habitats into highly fragmented landscapes can lead to numerous negative demographic and genetic impacts on native taxa that ultimately reduce population viability. In response to concerns over biodiversity loss, numerous investigators have proposed that traits such as body size and ecological specialization influence the sensitivity of species to habitat fragmentation. In this study, we examined how differences in body size and ecological specialization of two rodents (eastern chipmunk; Tamias striatus and white‐footed mouse; Peromyscus leucopus) impact their genetic connectivity within the highly fragmented landscape of the Upper Wabash River Basin (UWB), Indiana, and evaluated whether landscape configuration and complexity influenced patterns of genetic structure similarly between these two species. The more specialized chipmunk exhibited dramatically more genetic structure across the UWB than white‐footed mice, with genetic differentiation being correlated with geographic distance, configuration of intervening habitats, and complexity of forested habitats within sampling sites. In contrast, the generalist white‐footed mouse resembled a panmictic population across the UWB, and no landscape factors were found to influence gene flow. Despite the extensive previous work in abundance and occupancy within the UWB, no landscape factor that influenced occupancy or abundance was correlated with genetic differentiation in either species. The difference in predictors of occupancy, abundance, and gene flow suggests that species‐specific responses to fragmentation are scale dependent.

No MeSH data available.


Distribution of 28 study cells across the Upper Wabash Basin (UWB), Indiana, where trapping for eastern chipmunks and white‐footed mice occurred from 2001 to 2003. Land cover within the study area is primarily agriculture with forests along river tributaries. The Wabash River (blue online, gray in print) runs east–west across the entire study area.
© Copyright Policy - creativeCommonsBy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5016657&req=5

ece32269-fig-0001: Distribution of 28 study cells across the Upper Wabash Basin (UWB), Indiana, where trapping for eastern chipmunks and white‐footed mice occurred from 2001 to 2003. Land cover within the study area is primarily agriculture with forests along river tributaries. The Wabash River (blue online, gray in print) runs east–west across the entire study area.

Mentions: Our study area encompassed the Upper Wabash River Basin (UWB; Fig 1) in north‐central Indiana, USA. The UWB contains eight major watersheds that cumulatively drain greater than 20% of the state (>20,000 km2; Swihart and Slade 2004). Prior to European settlement, much of the UWB was forested (87% statewide; Smith et al. 1994), but conversion to agriculture has reduced forest cover to 8% within UWB. The remaining forests (mainly Quercus–Carya–Acer) are highly fragmented and tend to be clustered around the major drainages within UWB because floodplains or topography was not suitable for agriculture. Currently, 96% of UWB is privately owned with 88% designated as agriculture.


Evaluating the influence of life ‐ history characteristics on genetic structure: a comparison of small mammals inhabiting complex agricultural landscapes
Distribution of 28 study cells across the Upper Wabash Basin (UWB), Indiana, where trapping for eastern chipmunks and white‐footed mice occurred from 2001 to 2003. Land cover within the study area is primarily agriculture with forests along river tributaries. The Wabash River (blue online, gray in print) runs east–west across the entire study area.
© Copyright Policy - creativeCommonsBy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5016657&req=5

ece32269-fig-0001: Distribution of 28 study cells across the Upper Wabash Basin (UWB), Indiana, where trapping for eastern chipmunks and white‐footed mice occurred from 2001 to 2003. Land cover within the study area is primarily agriculture with forests along river tributaries. The Wabash River (blue online, gray in print) runs east–west across the entire study area.
Mentions: Our study area encompassed the Upper Wabash River Basin (UWB; Fig 1) in north‐central Indiana, USA. The UWB contains eight major watersheds that cumulatively drain greater than 20% of the state (>20,000 km2; Swihart and Slade 2004). Prior to European settlement, much of the UWB was forested (87% statewide; Smith et al. 1994), but conversion to agriculture has reduced forest cover to 8% within UWB. The remaining forests (mainly Quercus–Carya–Acer) are highly fragmented and tend to be clustered around the major drainages within UWB because floodplains or topography was not suitable for agriculture. Currently, 96% of UWB is privately owned with 88% designated as agriculture.

View Article: PubMed Central - PubMed

ABSTRACT

Conversion of formerly continuous native habitats into highly fragmented landscapes can lead to numerous negative demographic and genetic impacts on native taxa that ultimately reduce population viability. In response to concerns over biodiversity loss, numerous investigators have proposed that traits such as body size and ecological specialization influence the sensitivity of species to habitat fragmentation. In this study, we examined how differences in body size and ecological specialization of two rodents (eastern chipmunk; Tamias striatus and white‐footed mouse; Peromyscus leucopus) impact their genetic connectivity within the highly fragmented landscape of the Upper Wabash River Basin (UWB), Indiana, and evaluated whether landscape configuration and complexity influenced patterns of genetic structure similarly between these two species. The more specialized chipmunk exhibited dramatically more genetic structure across the UWB than white‐footed mice, with genetic differentiation being correlated with geographic distance, configuration of intervening habitats, and complexity of forested habitats within sampling sites. In contrast, the generalist white‐footed mouse resembled a panmictic population across the UWB, and no landscape factors were found to influence gene flow. Despite the extensive previous work in abundance and occupancy within the UWB, no landscape factor that influenced occupancy or abundance was correlated with genetic differentiation in either species. The difference in predictors of occupancy, abundance, and gene flow suggests that species‐specific responses to fragmentation are scale dependent.

No MeSH data available.