Limits...
Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes

View Article: PubMed Central - PubMed

ABSTRACT

Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

No MeSH data available.


Pie charts showing the distribution of cold-active enzymes reported in Table 1 in two different situations: (A) Nature of organism source and (B) Organism source.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5016527&req=5

Figure 1: Pie charts showing the distribution of cold-active enzymes reported in Table 1 in two different situations: (A) Nature of organism source and (B) Organism source.

Mentions: We have reviewed 92 cold-adapted enzymes that were successfully expressed in a heterologous host reported between 2010 and June 2016, which are detailed in Table 1. These enzymes were obtained mainly from psychrophilic or psychrotolerant organisms and bacteria or fungi (Figures 1A,B, respectively). These microorganisms were isolated from different and diverse environments, mainly from Polar Regions and marine environments. As explained later in this review, efficient catalysis at low temperatures requires an increase in protein flexibility, and therefore a reduction on enzyme stability. However, an interesting example of a cold-active enzyme isolated from a psycrophilic organism that had an unexpected high thermostability was reported for the superoxide dismutase DaSOD from Deschampsia antarctica (Rojas-Contreras et al., 2015). The optimal temperature of this enzyme is 20°C, it retains 80% of activity at 0°C and has detectable activity at −20°C, but also DaSOD possess high thermostability, its activity was not affected at 80°C, and the half-life time was 35 min at 100°C.


Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes
Pie charts showing the distribution of cold-active enzymes reported in Table 1 in two different situations: (A) Nature of organism source and (B) Organism source.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5016527&req=5

Figure 1: Pie charts showing the distribution of cold-active enzymes reported in Table 1 in two different situations: (A) Nature of organism source and (B) Organism source.
Mentions: We have reviewed 92 cold-adapted enzymes that were successfully expressed in a heterologous host reported between 2010 and June 2016, which are detailed in Table 1. These enzymes were obtained mainly from psychrophilic or psychrotolerant organisms and bacteria or fungi (Figures 1A,B, respectively). These microorganisms were isolated from different and diverse environments, mainly from Polar Regions and marine environments. As explained later in this review, efficient catalysis at low temperatures requires an increase in protein flexibility, and therefore a reduction on enzyme stability. However, an interesting example of a cold-active enzyme isolated from a psycrophilic organism that had an unexpected high thermostability was reported for the superoxide dismutase DaSOD from Deschampsia antarctica (Rojas-Contreras et al., 2015). The optimal temperature of this enzyme is 20°C, it retains 80% of activity at 0°C and has detectable activity at −20°C, but also DaSOD possess high thermostability, its activity was not affected at 80°C, and the half-life time was 35 min at 100°C.

View Article: PubMed Central - PubMed

ABSTRACT

Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

No MeSH data available.