Limits...
Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms)

View Article: PubMed Central - PubMed

ABSTRACT

The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms.

Electronic supplementary material: The online version of this article (doi:10.1186/s13568-016-0239-3) contains supplementary material, which is available to authorized users.

No MeSH data available.


Multi-trait QTL analysis in heterokaryon Set 1. The two color scales of the bars indicate the two parents contributing high value allele of QTLs. The variation in blue (varying from dark blue to light blue) represents alleles from Mes09143 and the darker the color the higher the effect of the QTL. Similar for the variation in red (varying from red to yellow) that represents the high value alleles from H97. Green bars at the top indicate chromosomes bearing QTL with significant effects. The significance of the QTL were indicated above the figure in the value of “−log10(p)”. The different widths of linkage groups reflect the different map lengths of the corresponding chromosomes and represent thus the recombination frequency of markers on each chromosome. It shows that chromosome 8 has the highest frequency of recombination of all chromosomes
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5016490&req=5

Fig4: Multi-trait QTL analysis in heterokaryon Set 1. The two color scales of the bars indicate the two parents contributing high value allele of QTLs. The variation in blue (varying from dark blue to light blue) represents alleles from Mes09143 and the darker the color the higher the effect of the QTL. Similar for the variation in red (varying from red to yellow) that represents the high value alleles from H97. Green bars at the top indicate chromosomes bearing QTL with significant effects. The significance of the QTL were indicated above the figure in the value of “−log10(p)”. The different widths of linkage groups reflect the different map lengths of the corresponding chromosomes and represent thus the recombination frequency of markers on each chromosome. It shows that chromosome 8 has the highest frequency of recombination of all chromosomes

Mentions: Several QTLs were found for COCO in Set 1 and 2 (Figs. 4, 5), but none for Set 3 (Fig. 6). Consistent QTLs over Set 1 and 2 was detected on CHR6 and CHR9. CHR6 explained 16.5 % of the COCO variation for Set 1 (Table 3), while it only explained 2.4 % COCO variation for Set 2 (Table 4). The high value allele for CHR6 in Set 1 was from parent H97, and that of CHR6 in Set 2 was from the other parent Mes09143. The QTL CHR9 explained 10 and 8.4 % COCO variation for Set 1 and Set 2, respectively, while the high value allele was contributed by different parent, i.e., Mes09143 for Set 1 and H97 for Set 2 (Table 4). The different origin of the high value alleles for the same QTL region indicates the interaction effect of the genotype and tester lines.Fig. 4


Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms)
Multi-trait QTL analysis in heterokaryon Set 1. The two color scales of the bars indicate the two parents contributing high value allele of QTLs. The variation in blue (varying from dark blue to light blue) represents alleles from Mes09143 and the darker the color the higher the effect of the QTL. Similar for the variation in red (varying from red to yellow) that represents the high value alleles from H97. Green bars at the top indicate chromosomes bearing QTL with significant effects. The significance of the QTL were indicated above the figure in the value of “−log10(p)”. The different widths of linkage groups reflect the different map lengths of the corresponding chromosomes and represent thus the recombination frequency of markers on each chromosome. It shows that chromosome 8 has the highest frequency of recombination of all chromosomes
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5016490&req=5

Fig4: Multi-trait QTL analysis in heterokaryon Set 1. The two color scales of the bars indicate the two parents contributing high value allele of QTLs. The variation in blue (varying from dark blue to light blue) represents alleles from Mes09143 and the darker the color the higher the effect of the QTL. Similar for the variation in red (varying from red to yellow) that represents the high value alleles from H97. Green bars at the top indicate chromosomes bearing QTL with significant effects. The significance of the QTL were indicated above the figure in the value of “−log10(p)”. The different widths of linkage groups reflect the different map lengths of the corresponding chromosomes and represent thus the recombination frequency of markers on each chromosome. It shows that chromosome 8 has the highest frequency of recombination of all chromosomes
Mentions: Several QTLs were found for COCO in Set 1 and 2 (Figs. 4, 5), but none for Set 3 (Fig. 6). Consistent QTLs over Set 1 and 2 was detected on CHR6 and CHR9. CHR6 explained 16.5 % of the COCO variation for Set 1 (Table 3), while it only explained 2.4 % COCO variation for Set 2 (Table 4). The high value allele for CHR6 in Set 1 was from parent H97, and that of CHR6 in Set 2 was from the other parent Mes09143. The QTL CHR9 explained 10 and 8.4 % COCO variation for Set 1 and Set 2, respectively, while the high value allele was contributed by different parent, i.e., Mes09143 for Set 1 and H97 for Set 2 (Table 4). The different origin of the high value alleles for the same QTL region indicates the interaction effect of the genotype and tester lines.Fig. 4

View Article: PubMed Central - PubMed

ABSTRACT

The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms.

Electronic supplementary material: The online version of this article (doi:10.1186/s13568-016-0239-3) contains supplementary material, which is available to authorized users.

No MeSH data available.