Limits...
Size Control and Growth Process Study of Au@Cu 2 O Particles

View Article: PubMed Central - PubMed

ABSTRACT

Au@Cu2O cuboctahedron with gold triangular nanoplate core and Cu2O shell was synthesized by a chemical method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests demonstrated that the as-synthesis samples were consisted of gold triangular nanoplate core and Cu2O shell, and both of them were in good crystallization. The effective size control of the particles could be realized by controlling the amount of Au cores added in the synthetic process and Au@Cu2O particles with different shell thickness could be synthesized. The decrease of Cu2O shell thickness had a great difference in the optical performance, including blue shift of the resonant peaks and enhanced absorption intensity. The growth process from rough sheet structure to cuboctahedron was also explored. The results of photocatalytic degradation experiment showed that Au@Cu2O particles showed much better photocatalytic performance than that of pure Cu2O. The improved photocatalytic property of the Au@Cu2O particles was attributed to the comprehensive effect of the enhanced visible-light absorption and high separation rate of electron-hole pairs.

Electronic supplementary material: The online version of this article (doi:10.1186/s11671-016-1603-6) contains supplementary material, which is available to authorized users.

No MeSH data available.


a XRD patterns, b SEM, c TEM, d STEM, and e cross-sectional compositional line profiles images of the synthesized samples. The inset in c is the HRTEM image of selected area
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5016315&req=5

Fig1: a XRD patterns, b SEM, c TEM, d STEM, and e cross-sectional compositional line profiles images of the synthesized samples. The inset in c is the HRTEM image of selected area

Mentions: The XRD patterns of the samples were showed in Fig. 1a. The results distinctly demonstrated that there were two sets of diffraction data, which accorded well with the cubic Au (JCPDS no. 89-3697) and cubic phase Cu2O (JCPDS no. 05-0667). This indicated the synthesis of Au and Cu2O crystals. As shell thickness is decreasing, intensity of the Au peaks was getting stronger. Figure 1b was the SEM results of the samples, which displayed that the Au@Cu2O particles were uniformed cuboctahedrons with good monodispersity. TEM image (Fig. 1c) confirmed the formation of core-shell structure, and each cuboctahedron contained one Au TN. TEM image, size distribution histograms, and absorption spectrum of the pure Au TNs were showed in Additional file 1: Figure S1. The HRTEM image of the square regions illustrated the interplanar spacing of 2.13 and 2.48 Å, assigned to the spacing of the (2 0 0) and (1 1 1) plane of Cu2O. Moreover, the line scanning (Fig. 1e) of a single Au@Cu2O particle showed that gold element is principally located in the center of the particle while copper was bordered, which agreed well with the scanning transmission electron microscopy (STEM) (Fig. 1d) image.Fig. 1


Size Control and Growth Process Study of Au@Cu 2 O Particles
a XRD patterns, b SEM, c TEM, d STEM, and e cross-sectional compositional line profiles images of the synthesized samples. The inset in c is the HRTEM image of selected area
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5016315&req=5

Fig1: a XRD patterns, b SEM, c TEM, d STEM, and e cross-sectional compositional line profiles images of the synthesized samples. The inset in c is the HRTEM image of selected area
Mentions: The XRD patterns of the samples were showed in Fig. 1a. The results distinctly demonstrated that there were two sets of diffraction data, which accorded well with the cubic Au (JCPDS no. 89-3697) and cubic phase Cu2O (JCPDS no. 05-0667). This indicated the synthesis of Au and Cu2O crystals. As shell thickness is decreasing, intensity of the Au peaks was getting stronger. Figure 1b was the SEM results of the samples, which displayed that the Au@Cu2O particles were uniformed cuboctahedrons with good monodispersity. TEM image (Fig. 1c) confirmed the formation of core-shell structure, and each cuboctahedron contained one Au TN. TEM image, size distribution histograms, and absorption spectrum of the pure Au TNs were showed in Additional file 1: Figure S1. The HRTEM image of the square regions illustrated the interplanar spacing of 2.13 and 2.48 Å, assigned to the spacing of the (2 0 0) and (1 1 1) plane of Cu2O. Moreover, the line scanning (Fig. 1e) of a single Au@Cu2O particle showed that gold element is principally located in the center of the particle while copper was bordered, which agreed well with the scanning transmission electron microscopy (STEM) (Fig. 1d) image.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Au@Cu2O cuboctahedron with gold triangular nanoplate core and Cu2O shell was synthesized by a chemical method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests demonstrated that the as-synthesis samples were consisted of gold triangular nanoplate core and Cu2O shell, and both of them were in good crystallization. The effective size control of the particles could be realized by controlling the amount of Au cores added in the synthetic process and Au@Cu2O particles with different shell thickness could be synthesized. The decrease of Cu2O shell thickness had a great difference in the optical performance, including blue shift of the resonant peaks and enhanced absorption intensity. The growth process from rough sheet structure to cuboctahedron was also explored. The results of photocatalytic degradation experiment showed that Au@Cu2O particles showed much better photocatalytic performance than that of pure Cu2O. The improved photocatalytic property of the Au@Cu2O particles was attributed to the comprehensive effect of the enhanced visible-light absorption and high separation rate of electron-hole pairs.

Electronic supplementary material: The online version of this article (doi:10.1186/s11671-016-1603-6) contains supplementary material, which is available to authorized users.

No MeSH data available.