Limits...
The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed ( Nigella sativa L.) Oil

View Article: PubMed Central - PubMed

ABSTRACT

The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

No MeSH data available.


Related in: MedlinePlus

GC-MS chromatography analysis of Nigella sativa oil extracted by (a) 474 supercritical fluid and (b) cold press.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC5015008&req=5

fig1: GC-MS chromatography analysis of Nigella sativa oil extracted by (a) 474 supercritical fluid and (b) cold press.

Mentions: The results showed significant differences between the SFE and the cold press oils based on the peak area (Table 3). Twenty compounds were identified in the SFE oil, while the cold press oil had 19 compounds. The major components of the SFE oil were Caryophyllene (17.47%) followed by thymoquinone (16.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5), and carvacrol (1.82%) (Figure 1(a)). The major components for cold press oil were 1,3,8-p-Menthatriene (23.82%) followed by thymoquinone (16.21%), 1,4-Cyclohexadiene (7.17%), longifolene (4.49), and carvacrol (3.90%) (Figure 1(b)).


The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed ( Nigella sativa L.) Oil
GC-MS chromatography analysis of Nigella sativa oil extracted by (a) 474 supercritical fluid and (b) cold press.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC5015008&req=5

fig1: GC-MS chromatography analysis of Nigella sativa oil extracted by (a) 474 supercritical fluid and (b) cold press.
Mentions: The results showed significant differences between the SFE and the cold press oils based on the peak area (Table 3). Twenty compounds were identified in the SFE oil, while the cold press oil had 19 compounds. The major components of the SFE oil were Caryophyllene (17.47%) followed by thymoquinone (16.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5), and carvacrol (1.82%) (Figure 1(a)). The major components for cold press oil were 1,3,8-p-Menthatriene (23.82%) followed by thymoquinone (16.21%), 1,4-Cyclohexadiene (7.17%), longifolene (4.49), and carvacrol (3.90%) (Figure 1(b)).

View Article: PubMed Central - PubMed

ABSTRACT

The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

No MeSH data available.


Related in: MedlinePlus