Limits...
Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

View Article: PubMed Central - PubMed

ABSTRACT

Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

No MeSH data available.


Post hoc results for the effects of age × hippocampal volume on hippocampal activation during the facial emotion identification task. Larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants, p = 0.040. mm, millimeters.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4997967&req=5

Figure 3: Post hoc results for the effects of age × hippocampal volume on hippocampal activation during the facial emotion identification task. Larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants, p = 0.040. mm, millimeters.

Mentions: Participants underwent fMRI while engaging in the facial emotion identification task. Therefore we were able to explore the structure-function-behavior relationship for the significant finding in hippocampus. Hippocampal activation was extracted via the MarsBaR ROI toolbox (Brett et al., 2002) for SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK). Using ANCOVA models, hippocampal activation was the dependent variable, age group was entered as a categorical predictor and hippocampal volume and RT collapsed across all emotional faces were continuous predictor variables, controlling for ICV. We also entered the age group × volume, age group × RT, and age group × volume × RT interactions into the model. As seen in Table 6, the age group × hippocampal volume interaction was significant (F(1,50) = 4.47, p = 0.040, = 0.08), such that larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants (Figure 3). None of the main effects or any of the other interactions was significant.


Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results
Post hoc results for the effects of age × hippocampal volume on hippocampal activation during the facial emotion identification task. Larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants, p = 0.040. mm, millimeters.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4997967&req=5

Figure 3: Post hoc results for the effects of age × hippocampal volume on hippocampal activation during the facial emotion identification task. Larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants, p = 0.040. mm, millimeters.
Mentions: Participants underwent fMRI while engaging in the facial emotion identification task. Therefore we were able to explore the structure-function-behavior relationship for the significant finding in hippocampus. Hippocampal activation was extracted via the MarsBaR ROI toolbox (Brett et al., 2002) for SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK). Using ANCOVA models, hippocampal activation was the dependent variable, age group was entered as a categorical predictor and hippocampal volume and RT collapsed across all emotional faces were continuous predictor variables, controlling for ICV. We also entered the age group × volume, age group × RT, and age group × volume × RT interactions into the model. As seen in Table 6, the age group × hippocampal volume interaction was significant (F(1,50) = 4.47, p = 0.040, = 0.08), such that larger hippocampus volumes were significantly associated with less hippocampal activation in young, but not older, participants (Figure 3). None of the main effects or any of the other interactions was significant.

View Article: PubMed Central - PubMed

ABSTRACT

Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

No MeSH data available.