Limits...
Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.


Tetramate formation in pyrroindomycin aglycone (279) biosynthesis [213–215].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979870&req=5

C39: Tetramate formation in pyrroindomycin aglycone (279) biosynthesis [213–215].

Mentions: Isolated in a screening against various drug-resistant pathogens, the pyrroindomycins A and B from Streptomyces rugosporus LL-42D005 (NRRL 21084) were the first discovered natural products containing a cyclohexene spiro-linked tetramate moiety combined with a trans-dialkyldecalin system in their aglycone (279) (Scheme 39) [213–214].


Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides
Tetramate formation in pyrroindomycin aglycone (279) biosynthesis [213–215].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979870&req=5

C39: Tetramate formation in pyrroindomycin aglycone (279) biosynthesis [213–215].
Mentions: Isolated in a screening against various drug-resistant pathogens, the pyrroindomycins A and B from Streptomyces rugosporus LL-42D005 (NRRL 21084) were the first discovered natural products containing a cyclohexene spiro-linked tetramate moiety combined with a trans-dialkyldecalin system in their aglycone (279) (Scheme 39) [213–214].

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.