Limits...
Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.


Ikarugamycin biosynthesis. Adapted from [209–211].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979870&req=5

C38: Ikarugamycin biosynthesis. Adapted from [209–211].

Mentions: Ikarugamycin (267) is a PTM produced by various Streptomyces species that shows a broad spectrum of biological activity including antimicrobial and cytotoxic properties [208]. Its biosynthesis has been reconstituted in E. coli and has shown to be remarkably streamlined, utilising only the three enzymes IkaABC to build up its highly complex structure (Scheme 38) [209–210].


Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides
Ikarugamycin biosynthesis. Adapted from [209–211].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979870&req=5

C38: Ikarugamycin biosynthesis. Adapted from [209–211].
Mentions: Ikarugamycin (267) is a PTM produced by various Streptomyces species that shows a broad spectrum of biological activity including antimicrobial and cytotoxic properties [208]. Its biosynthesis has been reconstituted in E. coli and has shown to be remarkably streamlined, utilising only the three enzymes IkaABC to build up its highly complex structure (Scheme 38) [209–210].

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.