Limits...
Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.


Structure of tetramic acids 251 (a) and major tautomers of 3-acyltetramic acids 252a–d (b). Adapted from [195].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979870&req=5

C35: Structure of tetramic acids 251 (a) and major tautomers of 3-acyltetramic acids 252a–d (b). Adapted from [195].

Mentions: 2.2.1 Dieckmann condensation: Tetramates. Natural products featuring a tetramic acid moiety (pyrrolidine-2,4-dione 251, Scheme 35) have been isolated from terrestrial and marine organisms, including fungi, bacteria and sponges. Due to different oxidation states of the five-membered heterocyclic core and diversified downstream processing, tetramates display a high structural complexity.


Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides
Structure of tetramic acids 251 (a) and major tautomers of 3-acyltetramic acids 252a–d (b). Adapted from [195].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979870&req=5

C35: Structure of tetramic acids 251 (a) and major tautomers of 3-acyltetramic acids 252a–d (b). Adapted from [195].
Mentions: 2.2.1 Dieckmann condensation: Tetramates. Natural products featuring a tetramic acid moiety (pyrrolidine-2,4-dione 251, Scheme 35) have been isolated from terrestrial and marine organisms, including fungi, bacteria and sponges. Due to different oxidation states of the five-membered heterocyclic core and diversified downstream processing, tetramates display a high structural complexity.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.