Limits...
Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.


A bicyclisation mechanism forms a β-lactone and a pyrrolidinone and removes the precursor from the assembly line in salinosporamide A (199) biosynthesis [160–161].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979870&req=5

C27: A bicyclisation mechanism forms a β-lactone and a pyrrolidinone and removes the precursor from the assembly line in salinosporamide A (199) biosynthesis [160–161].

Mentions: Salinosporamide. Oxetanones are rare structures and highly reactive due to their ring strain. One of the most prominent examples is the proteasome inhibitor salinosporamide A (199) (Scheme 27) [160–161].


Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides
A bicyclisation mechanism forms a β-lactone and a pyrrolidinone and removes the precursor from the assembly line in salinosporamide A (199) biosynthesis [160–161].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979870&req=5

C27: A bicyclisation mechanism forms a β-lactone and a pyrrolidinone and removes the precursor from the assembly line in salinosporamide A (199) biosynthesis [160–161].
Mentions: Salinosporamide. Oxetanones are rare structures and highly reactive due to their ring strain. One of the most prominent examples is the proteasome inhibitor salinosporamide A (199) (Scheme 27) [160–161].

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.