Limits...
Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.


Pyran formation in granaticin (36) biosynthesis. DNPA: 4-dihydro-9-hydroxy-1-methyl-10-oxo-3H-naphto[2,3-c]pyran-3-acetic acid. Modified from [27].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979870&req=5

C7: Pyran formation in granaticin (36) biosynthesis. DNPA: 4-dihydro-9-hydroxy-1-methyl-10-oxo-3H-naphto[2,3-c]pyran-3-acetic acid. Modified from [27].

Mentions: In granaticin (36) biosynthesis, the pyran-forming enzyme Gra-6 belongs to the short chain dehydrogenase/reductase (SDR) family and shows the highly conserved catalytic triad of Ser-Tyr-Lys (Scheme 7).


Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides
Pyran formation in granaticin (36) biosynthesis. DNPA: 4-dihydro-9-hydroxy-1-methyl-10-oxo-3H-naphto[2,3-c]pyran-3-acetic acid. Modified from [27].
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979870&req=5

C7: Pyran formation in granaticin (36) biosynthesis. DNPA: 4-dihydro-9-hydroxy-1-methyl-10-oxo-3H-naphto[2,3-c]pyran-3-acetic acid. Modified from [27].
Mentions: In granaticin (36) biosynthesis, the pyran-forming enzyme Gra-6 belongs to the short chain dehydrogenase/reductase (SDR) family and shows the highly conserved catalytic triad of Ser-Tyr-Lys (Scheme 7).

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

No MeSH data available.