Limits...
Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given.

No MeSH data available.


Diphosphorylation of diazaheterocyclic compounds via a tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite.
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979670&req=5

C57: Diphosphorylation of diazaheterocyclic compounds via a tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite.

Mentions: A tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite (DMPTMS, 273) to diazaheterocyclic compounds under microwave irradiation in acidic medium led to diphosphorylated products [95]. The 1,5-naphthyridine 274 and phenanthrolines 276, 278 and 280 in the presence of more than 2 equiv of DMPTMS were converted to the corresponding diphosphorylated products 275, 277, 279 and 281 with a high diastereoisomeric ratio (Scheme 57). In this reaction, the 1,4-addition of DMPTMS as a nucleophilic reagent on the N-protonated heterocycle followed by a 1,2-addition of DMPTMS on the N-silylated species lead to the diphosphorylated heterocycles after aqueous work-up.


Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates
Diphosphorylation of diazaheterocyclic compounds via a tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite.
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979670&req=5

C57: Diphosphorylation of diazaheterocyclic compounds via a tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite.
Mentions: A tandem 1,4–1,2 addition of dimethyl trimethylsilyl phosphite (DMPTMS, 273) to diazaheterocyclic compounds under microwave irradiation in acidic medium led to diphosphorylated products [95]. The 1,5-naphthyridine 274 and phenanthrolines 276, 278 and 280 in the presence of more than 2 equiv of DMPTMS were converted to the corresponding diphosphorylated products 275, 277, 279 and 281 with a high diastereoisomeric ratio (Scheme 57). In this reaction, the 1,4-addition of DMPTMS as a nucleophilic reagent on the N-protonated heterocycle followed by a 1,2-addition of DMPTMS on the N-silylated species lead to the diphosphorylated heterocycles after aqueous work-up.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given.

No MeSH data available.