Limits...
Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given.

No MeSH data available.


The synthesis of 3-arylmethyleneisoindolin-1-ones through a Horner–Wadsworth–Emmons reaction of Kabachnik–Fields reaction products.
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979670&req=5

C16: The synthesis of 3-arylmethyleneisoindolin-1-ones through a Horner–Wadsworth–Emmons reaction of Kabachnik–Fields reaction products.

Mentions: Also the Kabachnik–Fields reaction of formylbenzoic acid (55), dimethyl phosphonate and amines 62 or 66 followed by subsequent Horner–Wadsworth–Emmons reaction of the resulting cycloadducts 63 and 67 with arylaldehydes 64 or 68 afforded the corresponding 3-arylmethyleneisoindolin-1-ones 65 and 69, respectively (Scheme 16) [42–43].


Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates
The synthesis of 3-arylmethyleneisoindolin-1-ones through a Horner–Wadsworth–Emmons reaction of Kabachnik–Fields reaction products.
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979670&req=5

C16: The synthesis of 3-arylmethyleneisoindolin-1-ones through a Horner–Wadsworth–Emmons reaction of Kabachnik–Fields reaction products.
Mentions: Also the Kabachnik–Fields reaction of formylbenzoic acid (55), dimethyl phosphonate and amines 62 or 66 followed by subsequent Horner–Wadsworth–Emmons reaction of the resulting cycloadducts 63 and 67 with arylaldehydes 64 or 68 afforded the corresponding 3-arylmethyleneisoindolin-1-ones 65 and 69, respectively (Scheme 16) [42–43].

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given.

No MeSH data available.