Limits...
Synthesis of cobalt nanowires in aqueous solution under an external magnetic field

View Article: PubMed Central - HTML - PubMed

ABSTRACT

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (Ms) and the coercivity (Hc) were 112.00 emu/g and 352.87 Oe, respectively.

No MeSH data available.


XRD patterns of cobalt nanowires prepared with PVP (a) and without PVP (b) under an external magnetic field. The corresponding SAED patterns of cobalt nanowires prepared with PVP (c) and without PVP (d).
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4979639&req=5

Figure 3: XRD patterns of cobalt nanowires prepared with PVP (a) and without PVP (b) under an external magnetic field. The corresponding SAED patterns of cobalt nanowires prepared with PVP (c) and without PVP (d).

Mentions: XRD patterns of the cobalt nanowires prepared with PVP and without PVP under an external magnetic field are shown in Fig. 3,b, respectively. The corresponding SAED patterns are shown in Fig. 3,d. The diffraction peaks of cobalt nanowires prepared with PVP and without PVP could be indexed with the reflections of face-centered cubic (fcc) Co (PDF standard cards, JCPDS 15-0806, space group Fm−3m). Two peaks of fcc Co (2θ = 44.43° and 2θ = 75.94°) corresponding to Miller indices (111) and (220), respectively, were observed in each XRD pattern, and a diffraction ring as well as some scattered diffraction mottling were shown in each SAED pattern, which demonstrated that the resultant nanowires possessed crystal structure and PVP had only little impact on that.


Synthesis of cobalt nanowires in aqueous solution under an external magnetic field
XRD patterns of cobalt nanowires prepared with PVP (a) and without PVP (b) under an external magnetic field. The corresponding SAED patterns of cobalt nanowires prepared with PVP (c) and without PVP (d).
© Copyright Policy - Beilstein
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4979639&req=5

Figure 3: XRD patterns of cobalt nanowires prepared with PVP (a) and without PVP (b) under an external magnetic field. The corresponding SAED patterns of cobalt nanowires prepared with PVP (c) and without PVP (d).
Mentions: XRD patterns of the cobalt nanowires prepared with PVP and without PVP under an external magnetic field are shown in Fig. 3,b, respectively. The corresponding SAED patterns are shown in Fig. 3,d. The diffraction peaks of cobalt nanowires prepared with PVP and without PVP could be indexed with the reflections of face-centered cubic (fcc) Co (PDF standard cards, JCPDS 15-0806, space group Fm−3m). Two peaks of fcc Co (2θ = 44.43° and 2θ = 75.94°) corresponding to Miller indices (111) and (220), respectively, were observed in each XRD pattern, and a diffraction ring as well as some scattered diffraction mottling were shown in each SAED pattern, which demonstrated that the resultant nanowires possessed crystal structure and PVP had only little impact on that.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (Ms) and the coercivity (Hc) were 112.00 emu/g and 352.87 Oe, respectively.

No MeSH data available.