Limits...
Juvenile Atlantic cod behavior appears robust to near-future CO2 levels.

Jutfelt F, Hedgärde M - Front. Zool. (2015)

Bottom Line: These effects appear to alter many different types of sensory and cognitive functions; if widespread and persistent, they have the potential to cause ecosystem changes.We found no effect of CO2 treatment on any of the four behaviors tested: activity (F = 1.61, p = 0.33), emergence from shelter (F = 0.13, p = 0.76), relative lateralization (F = 2.82, p = 0.50), and absolute lateralization (F = 0.80, p = 0.26).Our results indicate that the behavior of Atlantic cod could be resilient to the impacts of near-future levels of water CO2.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Göteborg, Sweden ; The Lovén Centre Kristineberg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden.

ABSTRACT

Background: Ocean acidification caused by the anthropogenic release of CO2 is considered a major threat to marine ecosystems. One unexpected impact of elevated water CO2 levels is that behavioral alterations may occur in tropical reef fish and certain temperate fish species. These effects appear to alter many different types of sensory and cognitive functions; if widespread and persistent, they have the potential to cause ecosystem changes.

Methods: We investigated whether economically and ecologically important Atlantic cod also display behavioral abnormalities by exposing 52 juvenile cod to control conditions (500 μatm, duplicate tanks) or an end-of-the-century ocean acidification scenario (1000 μatm, duplicate tanks) for one month, during which time the fish were examined for a range of behaviors that have been reported to be affected by elevated CO2 in other fish. The behaviors were swimming activity, as measured by number of lines crossed per minute, the emergence from shelter, determined by how long it took the fish to exit a shelter after a disturbance, relative lateralization (a measure of behavioral turning side preference), and absolute lateralization (the strength of behavioral symmetry).

Results: We found no effect of CO2 treatment on any of the four behaviors tested: activity (F = 1.61, p = 0.33), emergence from shelter (F = 0.13, p = 0.76), relative lateralization (F = 2.82, p = 0.50), and absolute lateralization (F = 0.80, p = 0.26).

Conclusion: Our results indicate that the behavior of Atlantic cod could be resilient to the impacts of near-future levels of water CO2.

No MeSH data available.


Related in: MedlinePlus

Time to emerge from a shelter in Atlantic cod exposed to control or high CO2 water. The mean time in seconds for Atlantic cod to emerge from shelter after being chased, with fish exposed for 26 days to either control water (blue) or high pCO2 (orange); ncontrol = 22 and nCO2 = 20). The data represent the mean ± SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4940919&req=5

Fig2: Time to emerge from a shelter in Atlantic cod exposed to control or high CO2 water. The mean time in seconds for Atlantic cod to emerge from shelter after being chased, with fish exposed for 26 days to either control water (blue) or high pCO2 (orange); ncontrol = 22 and nCO2 = 20). The data represent the mean ± SEM.

Mentions: There was no significant difference in the time to emerge from shelter between the two groups (nested ANOVA; F = 0.13, p = 0.755, ncontrol = 22, and nCO2 = 20 (Figure 2), and no tank effect.Figure 2


Juvenile Atlantic cod behavior appears robust to near-future CO2 levels.

Jutfelt F, Hedgärde M - Front. Zool. (2015)

Time to emerge from a shelter in Atlantic cod exposed to control or high CO2 water. The mean time in seconds for Atlantic cod to emerge from shelter after being chased, with fish exposed for 26 days to either control water (blue) or high pCO2 (orange); ncontrol = 22 and nCO2 = 20). The data represent the mean ± SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4940919&req=5

Fig2: Time to emerge from a shelter in Atlantic cod exposed to control or high CO2 water. The mean time in seconds for Atlantic cod to emerge from shelter after being chased, with fish exposed for 26 days to either control water (blue) or high pCO2 (orange); ncontrol = 22 and nCO2 = 20). The data represent the mean ± SEM.
Mentions: There was no significant difference in the time to emerge from shelter between the two groups (nested ANOVA; F = 0.13, p = 0.755, ncontrol = 22, and nCO2 = 20 (Figure 2), and no tank effect.Figure 2

Bottom Line: These effects appear to alter many different types of sensory and cognitive functions; if widespread and persistent, they have the potential to cause ecosystem changes.We found no effect of CO2 treatment on any of the four behaviors tested: activity (F = 1.61, p = 0.33), emergence from shelter (F = 0.13, p = 0.76), relative lateralization (F = 2.82, p = 0.50), and absolute lateralization (F = 0.80, p = 0.26).Our results indicate that the behavior of Atlantic cod could be resilient to the impacts of near-future levels of water CO2.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Göteborg, Sweden ; The Lovén Centre Kristineberg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden.

ABSTRACT

Background: Ocean acidification caused by the anthropogenic release of CO2 is considered a major threat to marine ecosystems. One unexpected impact of elevated water CO2 levels is that behavioral alterations may occur in tropical reef fish and certain temperate fish species. These effects appear to alter many different types of sensory and cognitive functions; if widespread and persistent, they have the potential to cause ecosystem changes.

Methods: We investigated whether economically and ecologically important Atlantic cod also display behavioral abnormalities by exposing 52 juvenile cod to control conditions (500 μatm, duplicate tanks) or an end-of-the-century ocean acidification scenario (1000 μatm, duplicate tanks) for one month, during which time the fish were examined for a range of behaviors that have been reported to be affected by elevated CO2 in other fish. The behaviors were swimming activity, as measured by number of lines crossed per minute, the emergence from shelter, determined by how long it took the fish to exit a shelter after a disturbance, relative lateralization (a measure of behavioral turning side preference), and absolute lateralization (the strength of behavioral symmetry).

Results: We found no effect of CO2 treatment on any of the four behaviors tested: activity (F = 1.61, p = 0.33), emergence from shelter (F = 0.13, p = 0.76), relative lateralization (F = 2.82, p = 0.50), and absolute lateralization (F = 0.80, p = 0.26).

Conclusion: Our results indicate that the behavior of Atlantic cod could be resilient to the impacts of near-future levels of water CO2.

No MeSH data available.


Related in: MedlinePlus