Limits...
Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain.

Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW - Gut Pathog (2016)

Bottom Line: Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found.A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.

ABSTRACT

Background: Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.

Results: The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.

Conclusions: Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic tree of Klebsiella pneumoniae, a whole-genome phylogenetic tree; b MLSA phylogenetic tree; the scale represents the number of substitutions per site
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4940875&req=5

Fig3: Phylogenetic tree of Klebsiella pneumoniae, a whole-genome phylogenetic tree; b MLSA phylogenetic tree; the scale represents the number of substitutions per site

Mentions: Comparison of KP617 and the reference strains based on sequence similarity (percent identity ≤80) showed that 32 genes are unique for KP617, and that most of the functional genes of this strain are also conserved in the reference strains. The genes unique to the KP617 strain, such as the SOS-response repressor and protease LexA (EC 3.4.21.88), integrase, and phage-related protein were identified as belonging to the genome of the prophage Salmonella phage SEN4 (GenBank accession: NC_029015). When the KP617 genome was compared with that of the PittNDM01 strain, which represents the closest neighbor of the former strain on the phylogenetic tree (Figs. 3a, b), 94 genes showed a percent similarity of below 80; most of these were phage protein-encoding genes. These results indicate that the presence of prophage DNA is an important feature of the KP617 genome.Fig. 3


Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain.

Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW - Gut Pathog (2016)

Phylogenetic tree of Klebsiella pneumoniae, a whole-genome phylogenetic tree; b MLSA phylogenetic tree; the scale represents the number of substitutions per site
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4940875&req=5

Fig3: Phylogenetic tree of Klebsiella pneumoniae, a whole-genome phylogenetic tree; b MLSA phylogenetic tree; the scale represents the number of substitutions per site
Mentions: Comparison of KP617 and the reference strains based on sequence similarity (percent identity ≤80) showed that 32 genes are unique for KP617, and that most of the functional genes of this strain are also conserved in the reference strains. The genes unique to the KP617 strain, such as the SOS-response repressor and protease LexA (EC 3.4.21.88), integrase, and phage-related protein were identified as belonging to the genome of the prophage Salmonella phage SEN4 (GenBank accession: NC_029015). When the KP617 genome was compared with that of the PittNDM01 strain, which represents the closest neighbor of the former strain on the phylogenetic tree (Figs. 3a, b), 94 genes showed a percent similarity of below 80; most of these were phage protein-encoding genes. These results indicate that the presence of prophage DNA is an important feature of the KP617 genome.Fig. 3

Bottom Line: Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found.A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.

ABSTRACT

Background: Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.

Results: The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.

Conclusions: Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

No MeSH data available.


Related in: MedlinePlus