Limits...
Dahonggou Creek virus, a divergent lineage of hantavirus harbored by the long-tailed mole (Scaptonyx fusicaudus).

Kang HJ, Gu SH, Cook JA, Yanagihara R - Trop Med Health (2016)

Bottom Line: Novel hantaviruses, recently detected in moles (order Eulipotyphla, family Talpidae) from Europe, Asia, and North America would predict a broader host range and wider ecological diversity.Following multiple attempts, a previously unrecognized hantavirus, designated Dahonggou Creek virus (DHCV), was detected in a long-tailed mole, captured in Shimian County, Sichuan Province, People's Republic of China, in August 1989.Also, by further mining natural history collections of archival specimens, the genetic diversity of hantaviruses will elucidate their evolutionary origins.

View Article: PubMed Central - PubMed

Affiliation: Pacific Center for Emerging Infectious Diseases Research, Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI USA.

ABSTRACT
Novel hantaviruses, recently detected in moles (order Eulipotyphla, family Talpidae) from Europe, Asia, and North America would predict a broader host range and wider ecological diversity. Employing RT-PCR, archival frozen tissues from the Chinese shrew mole (Uropsilus soricipes), broad-footed mole (Scapanus latimanus), coast mole (Scapanus orarius), Townsend's mole (Scapanus townsendii), and long-tailed mole (Scaptonyx fusicaudus) were analyzed for hantavirus RNA. Following multiple attempts, a previously unrecognized hantavirus, designated Dahonggou Creek virus (DHCV), was detected in a long-tailed mole, captured in Shimian County, Sichuan Province, People's Republic of China, in August 1989. Analyses of a 1058-nucleotide region of the RNA-dependent RNA polymerase-encoding L segment indicated that DHCV was genetically distinct from other rodent-, shrew-, mole-, and bat-borne hantaviruses. Phylogenetic trees, using maximum likelihood and Bayesian methods, showed that DHCV represented a divergent lineage comprising crocidurine and myosoricine shrew-borne hantaviruses. Although efforts to obtain the S- and M-genomic segments failed, the L-segment sequence analysis, reported here, expands the genetic database of non-rodent-borne hantaviruses. Also, by further mining natural history collections of archival specimens, the genetic diversity of hantaviruses will elucidate their evolutionary origins.

No MeSH data available.


Related in: MedlinePlus

Map of the People’s Republic of China and neighboring countries, showing the site in Sichuan province, where the hantavirus-infected long-tailed mole (Scaptonyx fusicaudus) was captured (red triangle). The shaded area designates the geographic distribution of the long-tailed mole
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4940846&req=5

Fig1: Map of the People’s Republic of China and neighboring countries, showing the site in Sichuan province, where the hantavirus-infected long-tailed mole (Scaptonyx fusicaudus) was captured (red triangle). The shaded area designates the geographic distribution of the long-tailed mole

Mentions: By employing oligonucleotide primers and PCR cycling conditions used successfully to detect other mole-borne hantaviruses [12–16], a 1058-nucleotide region of the RdRp-encoding L segment was amplified from RNA extracted from heart and kidney tissues of a long-tailed mole, captured along Dahonggou Creek (29° 08′ N, 102° 25′ E), 17 km south-southeast of Shimian, in Sichuan Province, in China, on August 11, 1989 (Fig. 1). Countless attempts to amplify the S and M segments were unsuccessful. Apart from the inability to design suitable primers because of the vast genetic diversity, the limited amount of tissue and presumably poor quality of RNA proved to be insurmountable obstacles. Similarly, repeated RT-PCR attempts failed to detect hantavirus RNA in tissues from the other mole species. That said, based on our past experience of initially failing then succeeding to amplify hantavirus genes from other mole tissues [11–14], we are not entirely convinced that these other mole species do not harbor hantaviruses.Fig. 1


Dahonggou Creek virus, a divergent lineage of hantavirus harbored by the long-tailed mole (Scaptonyx fusicaudus).

Kang HJ, Gu SH, Cook JA, Yanagihara R - Trop Med Health (2016)

Map of the People’s Republic of China and neighboring countries, showing the site in Sichuan province, where the hantavirus-infected long-tailed mole (Scaptonyx fusicaudus) was captured (red triangle). The shaded area designates the geographic distribution of the long-tailed mole
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4940846&req=5

Fig1: Map of the People’s Republic of China and neighboring countries, showing the site in Sichuan province, where the hantavirus-infected long-tailed mole (Scaptonyx fusicaudus) was captured (red triangle). The shaded area designates the geographic distribution of the long-tailed mole
Mentions: By employing oligonucleotide primers and PCR cycling conditions used successfully to detect other mole-borne hantaviruses [12–16], a 1058-nucleotide region of the RdRp-encoding L segment was amplified from RNA extracted from heart and kidney tissues of a long-tailed mole, captured along Dahonggou Creek (29° 08′ N, 102° 25′ E), 17 km south-southeast of Shimian, in Sichuan Province, in China, on August 11, 1989 (Fig. 1). Countless attempts to amplify the S and M segments were unsuccessful. Apart from the inability to design suitable primers because of the vast genetic diversity, the limited amount of tissue and presumably poor quality of RNA proved to be insurmountable obstacles. Similarly, repeated RT-PCR attempts failed to detect hantavirus RNA in tissues from the other mole species. That said, based on our past experience of initially failing then succeeding to amplify hantavirus genes from other mole tissues [11–14], we are not entirely convinced that these other mole species do not harbor hantaviruses.Fig. 1

Bottom Line: Novel hantaviruses, recently detected in moles (order Eulipotyphla, family Talpidae) from Europe, Asia, and North America would predict a broader host range and wider ecological diversity.Following multiple attempts, a previously unrecognized hantavirus, designated Dahonggou Creek virus (DHCV), was detected in a long-tailed mole, captured in Shimian County, Sichuan Province, People's Republic of China, in August 1989.Also, by further mining natural history collections of archival specimens, the genetic diversity of hantaviruses will elucidate their evolutionary origins.

View Article: PubMed Central - PubMed

Affiliation: Pacific Center for Emerging Infectious Diseases Research, Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI USA.

ABSTRACT
Novel hantaviruses, recently detected in moles (order Eulipotyphla, family Talpidae) from Europe, Asia, and North America would predict a broader host range and wider ecological diversity. Employing RT-PCR, archival frozen tissues from the Chinese shrew mole (Uropsilus soricipes), broad-footed mole (Scapanus latimanus), coast mole (Scapanus orarius), Townsend's mole (Scapanus townsendii), and long-tailed mole (Scaptonyx fusicaudus) were analyzed for hantavirus RNA. Following multiple attempts, a previously unrecognized hantavirus, designated Dahonggou Creek virus (DHCV), was detected in a long-tailed mole, captured in Shimian County, Sichuan Province, People's Republic of China, in August 1989. Analyses of a 1058-nucleotide region of the RNA-dependent RNA polymerase-encoding L segment indicated that DHCV was genetically distinct from other rodent-, shrew-, mole-, and bat-borne hantaviruses. Phylogenetic trees, using maximum likelihood and Bayesian methods, showed that DHCV represented a divergent lineage comprising crocidurine and myosoricine shrew-borne hantaviruses. Although efforts to obtain the S- and M-genomic segments failed, the L-segment sequence analysis, reported here, expands the genetic database of non-rodent-borne hantaviruses. Also, by further mining natural history collections of archival specimens, the genetic diversity of hantaviruses will elucidate their evolutionary origins.

No MeSH data available.


Related in: MedlinePlus