Limits...
Growth and stress response in Arabidopsis thaliana, Nicotiana benthamiana, Glycine max, Solanum tuberosum and Brassica napus cultivated under polychromatic LEDs.

Janda M, Navrátil O, Haisel D, Jindřichová B, Fousek J, Burketová L, Čeřovská N, Moravec T - Plant Methods (2015)

Bottom Line: Among these are that LEDs have predicted lifetimes from 50-100.000 hours without significant drops in efficiency and energy consumption is much lower compared to traditional fluorescent tubes.The LED system was characterized and compared with standard fluorescence tubes in the same cultivation room.Interestingly, individual plant species responded differently to the LED lights so it would be reasonable to test their utility to any particular application.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CR, Rozvojová 313, 165 02 Prague 6, Czech Republic ; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.

ABSTRACT

Background: The use of light emitting diodes (LEDs) brings several key advantages over existing illumination technologies for indoor plant cultivation. Among these are that LEDs have predicted lifetimes from 50-100.000 hours without significant drops in efficiency and energy consumption is much lower compared to traditional fluorescent tubes. Recent advances allow LEDs to be used with customized wavelengths for plant growth. However, most of these LED growth systems use mixtures of chips emitting in several narrow wavelengths and frequently they are not compatible with existing infrastructures. This study tested the growth of five different plant species under phosphor coated LED-chips fitted into a tube with a standard G13 base that provide continuous visible light illumination with enhanced blue and red light.

Results: The LED system was characterized and compared with standard fluorescence tubes in the same cultivation room. Significant differences in heat generation between LEDs and fluorescent tubes were clearly demonstrated. Also, LED lights allowed for better control and stability of preset conditions. Physiological properties such as growth characteristics, biomass, and chlorophyll content were measured and the responses to pathogen assessed for five plant species (both the model plants Arabidopsis thaliana, Nicotiana bentamiana and crop species potato, oilseed rape and soybean) under the different illumination sources.

Conclusions: We showed that polychromatic LEDs provide light of sufficient quality and intensity for plant growth using less than 40% of the electricity required by the standard fluorescent lighting under test. The tested type of LED installation provides a simple upgrade pathway for existing infrastructure for indoor plant growth. Interestingly, individual plant species responded differently to the LED lights so it would be reasonable to test their utility to any particular application.

No MeSH data available.


Related in: MedlinePlus

Growth of G. max plants under different illumination sources. Length (A) and number of trifoliate leaves (B) of the plants during the first month after replanting to 14x14 cm pots. C) Fresh and dry plant weight of above soil plant biomass. D) Individual mature seed weight. Curves and bars are based on data from one of two biological replications, 10 plants were used for treatment. Error bars represent SD.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4940826&req=5

Fig4: Growth of G. max plants under different illumination sources. Length (A) and number of trifoliate leaves (B) of the plants during the first month after replanting to 14x14 cm pots. C) Fresh and dry plant weight of above soil plant biomass. D) Individual mature seed weight. Curves and bars are based on data from one of two biological replications, 10 plants were used for treatment. Error bars represent SD.

Mentions: From all the plant species tested, the largest photomorphogenic impact of the light source used was observed in soybean. Plants grown under fluorescent lights showed very rapid growth with an increasing internodal length (from 3 cm up to 20 cm, Figure 4A). By contrast, internodes of plants grown under the LED tubes were almost all of the same length of about 4.5 cm (Figure 4A). LED grown plants were also somewhat slower in developing new leaves (Figure 4B) (3 days) and in the appearance of first flowers (32 vs. 37 days after germination, Additional file: 3 Figure S4A; Additional file: 3 S4B). This difference was reflected also in the lower biomass harvested one month after germination (Figure 4C) and interestingly by a longer seed filling stage. This was reflected in a significantly higher weight of individual seeds (Figure 4D) in both biological replications of the experiment. The number of seeds per plant was significantly lower under LEDs in one of the biological replicates (54 vs. 25); however, this difference was insignificant in the second biological replication (48 vs. 45). Analysis of photosynthetic pigments showed increased levels of antheraxantin and violaxanthin and reduced levels of lutein, zeaxanthin and both chlorophylls in LED grown plants (Additional file: 3 Figure S4C).Figure 4


Growth and stress response in Arabidopsis thaliana, Nicotiana benthamiana, Glycine max, Solanum tuberosum and Brassica napus cultivated under polychromatic LEDs.

Janda M, Navrátil O, Haisel D, Jindřichová B, Fousek J, Burketová L, Čeřovská N, Moravec T - Plant Methods (2015)

Growth of G. max plants under different illumination sources. Length (A) and number of trifoliate leaves (B) of the plants during the first month after replanting to 14x14 cm pots. C) Fresh and dry plant weight of above soil plant biomass. D) Individual mature seed weight. Curves and bars are based on data from one of two biological replications, 10 plants were used for treatment. Error bars represent SD.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4940826&req=5

Fig4: Growth of G. max plants under different illumination sources. Length (A) and number of trifoliate leaves (B) of the plants during the first month after replanting to 14x14 cm pots. C) Fresh and dry plant weight of above soil plant biomass. D) Individual mature seed weight. Curves and bars are based on data from one of two biological replications, 10 plants were used for treatment. Error bars represent SD.
Mentions: From all the plant species tested, the largest photomorphogenic impact of the light source used was observed in soybean. Plants grown under fluorescent lights showed very rapid growth with an increasing internodal length (from 3 cm up to 20 cm, Figure 4A). By contrast, internodes of plants grown under the LED tubes were almost all of the same length of about 4.5 cm (Figure 4A). LED grown plants were also somewhat slower in developing new leaves (Figure 4B) (3 days) and in the appearance of first flowers (32 vs. 37 days after germination, Additional file: 3 Figure S4A; Additional file: 3 S4B). This difference was reflected also in the lower biomass harvested one month after germination (Figure 4C) and interestingly by a longer seed filling stage. This was reflected in a significantly higher weight of individual seeds (Figure 4D) in both biological replications of the experiment. The number of seeds per plant was significantly lower under LEDs in one of the biological replicates (54 vs. 25); however, this difference was insignificant in the second biological replication (48 vs. 45). Analysis of photosynthetic pigments showed increased levels of antheraxantin and violaxanthin and reduced levels of lutein, zeaxanthin and both chlorophylls in LED grown plants (Additional file: 3 Figure S4C).Figure 4

Bottom Line: Among these are that LEDs have predicted lifetimes from 50-100.000 hours without significant drops in efficiency and energy consumption is much lower compared to traditional fluorescent tubes.The LED system was characterized and compared with standard fluorescence tubes in the same cultivation room.Interestingly, individual plant species responded differently to the LED lights so it would be reasonable to test their utility to any particular application.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CR, Rozvojová 313, 165 02 Prague 6, Czech Republic ; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.

ABSTRACT

Background: The use of light emitting diodes (LEDs) brings several key advantages over existing illumination technologies for indoor plant cultivation. Among these are that LEDs have predicted lifetimes from 50-100.000 hours without significant drops in efficiency and energy consumption is much lower compared to traditional fluorescent tubes. Recent advances allow LEDs to be used with customized wavelengths for plant growth. However, most of these LED growth systems use mixtures of chips emitting in several narrow wavelengths and frequently they are not compatible with existing infrastructures. This study tested the growth of five different plant species under phosphor coated LED-chips fitted into a tube with a standard G13 base that provide continuous visible light illumination with enhanced blue and red light.

Results: The LED system was characterized and compared with standard fluorescence tubes in the same cultivation room. Significant differences in heat generation between LEDs and fluorescent tubes were clearly demonstrated. Also, LED lights allowed for better control and stability of preset conditions. Physiological properties such as growth characteristics, biomass, and chlorophyll content were measured and the responses to pathogen assessed for five plant species (both the model plants Arabidopsis thaliana, Nicotiana bentamiana and crop species potato, oilseed rape and soybean) under the different illumination sources.

Conclusions: We showed that polychromatic LEDs provide light of sufficient quality and intensity for plant growth using less than 40% of the electricity required by the standard fluorescent lighting under test. The tested type of LED installation provides a simple upgrade pathway for existing infrastructure for indoor plant growth. Interestingly, individual plant species responded differently to the LED lights so it would be reasonable to test their utility to any particular application.

No MeSH data available.


Related in: MedlinePlus