Limits...
Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin RE, Burow M, Kliebenstein DJ - Front Plant Sci (2016)

Bottom Line: To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL.Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation.This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of California, DavisDavis, CA, USA; Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific ResearchPontevedra, Spain.

ABSTRACT
A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

No MeSH data available.


Related in: MedlinePlus

Overlap of significant GWA candidate genes between plant biomass and GSL phenotypes. VENN diagram showing common candidate genes identified among the short-chain GSLs, long-chain GSLs, total incolic GSLs and plant biomass traits studied from control (MS) and treated samples with 50 μM of allyl GSL (MS + Allyl).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940622&req=5

Figure 5: Overlap of significant GWA candidate genes between plant biomass and GSL phenotypes. VENN diagram showing common candidate genes identified among the short-chain GSLs, long-chain GSLs, total incolic GSLs and plant biomass traits studied from control (MS) and treated samples with 50 μM of allyl GSL (MS + Allyl).

Mentions: To check if the GWA mapping identified candidate genes were similar for the biomass and GSL traits, we investigated the overlap of GWA candidate genes identified across plant biomass and three GSL traits that summarize the majority of GSL variation (short-chain GSLs, long-chain GSLs and total indolic GSLs) from control and treated samples (Figure 5). This showed that 133 of the identified GWA candidate gene sets from plant biomass overlap with the identified GWA candidate genes from GSL phenotypes in the control samples. The number of overlap candidate genes between plant biomass and GSL traits was 232 for the exogenous allyl treated samples. Only 27 genes overlapped between biomass and GSL accumulation in both the presence and absence of allyl GSL. This suggests that the effect of the majority of the candidate genes we identified for biomass and GSL phenotypes are conditioned by the exogenous allyl treatment.


Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin RE, Burow M, Kliebenstein DJ - Front Plant Sci (2016)

Overlap of significant GWA candidate genes between plant biomass and GSL phenotypes. VENN diagram showing common candidate genes identified among the short-chain GSLs, long-chain GSLs, total incolic GSLs and plant biomass traits studied from control (MS) and treated samples with 50 μM of allyl GSL (MS + Allyl).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940622&req=5

Figure 5: Overlap of significant GWA candidate genes between plant biomass and GSL phenotypes. VENN diagram showing common candidate genes identified among the short-chain GSLs, long-chain GSLs, total incolic GSLs and plant biomass traits studied from control (MS) and treated samples with 50 μM of allyl GSL (MS + Allyl).
Mentions: To check if the GWA mapping identified candidate genes were similar for the biomass and GSL traits, we investigated the overlap of GWA candidate genes identified across plant biomass and three GSL traits that summarize the majority of GSL variation (short-chain GSLs, long-chain GSLs and total indolic GSLs) from control and treated samples (Figure 5). This showed that 133 of the identified GWA candidate gene sets from plant biomass overlap with the identified GWA candidate genes from GSL phenotypes in the control samples. The number of overlap candidate genes between plant biomass and GSL traits was 232 for the exogenous allyl treated samples. Only 27 genes overlapped between biomass and GSL accumulation in both the presence and absence of allyl GSL. This suggests that the effect of the majority of the candidate genes we identified for biomass and GSL phenotypes are conditioned by the exogenous allyl treatment.

Bottom Line: To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL.Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation.This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of California, DavisDavis, CA, USA; Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific ResearchPontevedra, Spain.

ABSTRACT
A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

No MeSH data available.


Related in: MedlinePlus