Limits...
Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

Khan MZ, Sultana M, Al-Mamun MR, Hasan MR - J Environ Public Health (2016)

Bottom Line: The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel.Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications.Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering, Jessore Science and Technology University, Jessore 7408, Bangladesh.

ABSTRACT
The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

No MeSH data available.


Comparison chart of calorific value of oil.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4940549&req=5

fig7: Comparison chart of calorific value of oil.

Mentions: One of the important properties of a fuel on which its efficiency is judged is its calorific value. The calorific value is defined as the energy given out when unit mass of fuel is burned completely in sufficient air. The calorific value of WPPO was estimated according to IP 12/58 method. The calorific value of WPPO was 9829.3515 kcal/kg. Figure 7 represents the comparison of calorific value of WPPO with other kinds of oil.


Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

Khan MZ, Sultana M, Al-Mamun MR, Hasan MR - J Environ Public Health (2016)

Comparison chart of calorific value of oil.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4940549&req=5

fig7: Comparison chart of calorific value of oil.
Mentions: One of the important properties of a fuel on which its efficiency is judged is its calorific value. The calorific value is defined as the energy given out when unit mass of fuel is burned completely in sufficient air. The calorific value of WPPO was estimated according to IP 12/58 method. The calorific value of WPPO was 9829.3515 kcal/kg. Figure 7 represents the comparison of calorific value of WPPO with other kinds of oil.

Bottom Line: The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel.Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications.Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering, Jessore Science and Technology University, Jessore 7408, Bangladesh.

ABSTRACT
The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

No MeSH data available.