Limits...
Energy-efficient control of a screw-drive pipe robot with consideration of actuator's characteristics.

Li P, Ma S, Lyu C, Jiang X, Liu Y - Robotics Biomim (2016)

Bottom Line: Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long.We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation.This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, ShenZhen, 518055 China ; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong China.

ABSTRACT

Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input energy as the cost function and a more accurate DC motor model to generate an optimal energy-efficient velocity control for a screw-drive pipe robot to make use of the limited energy in field environment. We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation. This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application. Simulations are conducted to compare the proposed method with the sinusoidal control and loss minimization control (minimization of copper losses of the motor), and results are discussed in this paper.

No MeSH data available.


Related in: MedlinePlus

Velocity selection according to . a Velocity profiles under  m,  s, and , b velocity profiles under the required  m and  s that means , thus, the recalculated time  s and  s
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940445&req=5

Fig11: Velocity selection according to . a Velocity profiles under  m,  s, and , b velocity profiles under the required  m and  s that means , thus, the recalculated time  s and  s

Mentions: Figure 11 shows the velocity selection strategy according to the value of . When the value of is greater than 1.5, the parabolic curve is selected as the velocity profile since it is the upper limit of the velocity per unit (see Fig. 7). While the value of is lower than 1, which means even the maximum speed of motor does not satisfy the requirement of and , the velocity is generated according to (40), which minimizes the total energy as well. From the above, we can see that the minimum energy control causes lower energy dissipation and provides more accurate numerical results, compared to that of the loss minimization control only considering armature resistance. The summary of energy dissipations is listed in Table 2.Fig. 11


Energy-efficient control of a screw-drive pipe robot with consideration of actuator's characteristics.

Li P, Ma S, Lyu C, Jiang X, Liu Y - Robotics Biomim (2016)

Velocity selection according to . a Velocity profiles under  m,  s, and , b velocity profiles under the required  m and  s that means , thus, the recalculated time  s and  s
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940445&req=5

Fig11: Velocity selection according to . a Velocity profiles under  m,  s, and , b velocity profiles under the required  m and  s that means , thus, the recalculated time  s and  s
Mentions: Figure 11 shows the velocity selection strategy according to the value of . When the value of is greater than 1.5, the parabolic curve is selected as the velocity profile since it is the upper limit of the velocity per unit (see Fig. 7). While the value of is lower than 1, which means even the maximum speed of motor does not satisfy the requirement of and , the velocity is generated according to (40), which minimizes the total energy as well. From the above, we can see that the minimum energy control causes lower energy dissipation and provides more accurate numerical results, compared to that of the loss minimization control only considering armature resistance. The summary of energy dissipations is listed in Table 2.Fig. 11

Bottom Line: Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long.We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation.This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, ShenZhen, 518055 China ; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong China.

ABSTRACT

Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input energy as the cost function and a more accurate DC motor model to generate an optimal energy-efficient velocity control for a screw-drive pipe robot to make use of the limited energy in field environment. We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation. This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application. Simulations are conducted to compare the proposed method with the sinusoidal control and loss minimization control (minimization of copper losses of the motor), and results are discussed in this paper.

No MeSH data available.


Related in: MedlinePlus