Limits...
Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK - Front Plant Sci (2016)

Bottom Line: In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties.However, main effects of agriculture on soil properties and productivity were biome-dependent.This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil health.

View Article: PubMed Central - PubMed

Affiliation: Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, NSW Australia.

ABSTRACT
Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil health.

No MeSH data available.


Related in: MedlinePlus

Bacterial Shannon diversity of agricultural vs. natural systems in arid (n = 26 and 70), continental (n = 43 and 119), temperate (n = 82 and 128) and tropical (n = 14 and 36) regions. The sites were selected based on a meta-analysis consisting of both published and unpublished data wherein bacterial diversity and compositions is described based on next generation sequencing techniques (either 454 or Miseq; see Material and Methods for more details). The main climate classes are based on global maps available for the most frequently used Köppen climate classification map (Kottek et al., 2006). *P < 0.01; **P < 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940416&req=5

Figure 4: Bacterial Shannon diversity of agricultural vs. natural systems in arid (n = 26 and 70), continental (n = 43 and 119), temperate (n = 82 and 128) and tropical (n = 14 and 36) regions. The sites were selected based on a meta-analysis consisting of both published and unpublished data wherein bacterial diversity and compositions is described based on next generation sequencing techniques (either 454 or Miseq; see Material and Methods for more details). The main climate classes are based on global maps available for the most frequently used Köppen climate classification map (Kottek et al., 2006). *P < 0.01; **P < 0.001.

Mentions: We selected the Shannon diversity index as our metric of alpha diversity because it is highly recommended and commonly used when analyzing microbial diversity (He et al., 2013), and has been shown to reduce the bias in relation to other diversity metrics, such as the number of OTUs, when comparing data from multiple sources (He et al., 2013). Our analysis revealed significantly higher microbial diversity in agricultural systems as compared to natural systems in arid (P < 0.01) and temperate (P < 0.001) regions (Figure 4). Microbial diversity was lower in agricultural systems in continental and tropical regions as compared with natural systems; however, the trends were not statistically significant.


Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK - Front Plant Sci (2016)

Bacterial Shannon diversity of agricultural vs. natural systems in arid (n = 26 and 70), continental (n = 43 and 119), temperate (n = 82 and 128) and tropical (n = 14 and 36) regions. The sites were selected based on a meta-analysis consisting of both published and unpublished data wherein bacterial diversity and compositions is described based on next generation sequencing techniques (either 454 or Miseq; see Material and Methods for more details). The main climate classes are based on global maps available for the most frequently used Köppen climate classification map (Kottek et al., 2006). *P < 0.01; **P < 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940416&req=5

Figure 4: Bacterial Shannon diversity of agricultural vs. natural systems in arid (n = 26 and 70), continental (n = 43 and 119), temperate (n = 82 and 128) and tropical (n = 14 and 36) regions. The sites were selected based on a meta-analysis consisting of both published and unpublished data wherein bacterial diversity and compositions is described based on next generation sequencing techniques (either 454 or Miseq; see Material and Methods for more details). The main climate classes are based on global maps available for the most frequently used Köppen climate classification map (Kottek et al., 2006). *P < 0.01; **P < 0.001.
Mentions: We selected the Shannon diversity index as our metric of alpha diversity because it is highly recommended and commonly used when analyzing microbial diversity (He et al., 2013), and has been shown to reduce the bias in relation to other diversity metrics, such as the number of OTUs, when comparing data from multiple sources (He et al., 2013). Our analysis revealed significantly higher microbial diversity in agricultural systems as compared to natural systems in arid (P < 0.01) and temperate (P < 0.001) regions (Figure 4). Microbial diversity was lower in agricultural systems in continental and tropical regions as compared with natural systems; however, the trends were not statistically significant.

Bottom Line: In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties.However, main effects of agriculture on soil properties and productivity were biome-dependent.This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil health.

View Article: PubMed Central - PubMed

Affiliation: Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, NSW Australia.

ABSTRACT
Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil health.

No MeSH data available.


Related in: MedlinePlus