Limits...
Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages.

González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, Soriano-Santos J - Front Microbiol (2016)

Bottom Line: The reducing power of all samples was concentration dependent.In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts.Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, Metropolitan Autonomous University, Campus IztapalapaMexico, Mexico; Laboratory of Biotechnology, Research Center for Biological Sciences, Autonomous University of TlaxcalaTlaxcala, Mexico.

ABSTRACT
Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported.

No MeSH data available.


Reducing power assay of aqueous extracts of dry Pleurotus ostreatus. T1 = extract obtained at room temperature, T2 = extract obtained by boiling. Values are the average of three replicates ± DS.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940407&req=5

Figure 1: Reducing power assay of aqueous extracts of dry Pleurotus ostreatus. T1 = extract obtained at room temperature, T2 = extract obtained by boiling. Values are the average of three replicates ± DS.

Mentions: The reducing power of all samples was concentration dependent (Figures 1–4). In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. In the case of extracts from dried samples, the highest value of reducing power it showed by aqueous extract obtained by boiling of fruiting body with a value of 0.701 ± 0.003, and the methanol extract obtained at room temperature of mycelium showed 0.645 ± 0.009, both at a concentration of 100 mg GAE/L (Figures 1 and 2). For extracts of fresh samples, the highest values were obtained in water extracts of fruiting body by boiling with a value of 0.439 ± 0.011 (Figure 3) and methanolic extracts of the fruiting body and primordium both by boiling, with values of 0.269 ± 0.003 and 0.251 ± 0.005, respectively (Figure 4), both at a concentration of 500 mg GAE/L. Arbaayah and Umi (2013) reported reduced power of ethanolic extracts of mushrooms of Pleurotus genus and Schizophyllum commun. The higher reducing power (at 10 mg sample/mL) was shown for P. djamor var. djamor with an absorbance of 0.874, followed by P. djamor var. roseus (0.771), Schizophyllum commune (0.568), P. pulmonarius (0.429), and finally P. ostreatus (0.397). Shimada et al. (1992) and Arbaayah and Umi (2013) reported that the reducing power of the mushroom extracts can be due to the ability of hydrogens donation that stabilize the molecules by acceptance of hydrogen ions in the extracts. The properties of the reducing power can be an indicator of antioxidant potential of compound evaluated (Meir et al., 1995).


Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages.

González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, Soriano-Santos J - Front Microbiol (2016)

Reducing power assay of aqueous extracts of dry Pleurotus ostreatus. T1 = extract obtained at room temperature, T2 = extract obtained by boiling. Values are the average of three replicates ± DS.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940407&req=5

Figure 1: Reducing power assay of aqueous extracts of dry Pleurotus ostreatus. T1 = extract obtained at room temperature, T2 = extract obtained by boiling. Values are the average of three replicates ± DS.
Mentions: The reducing power of all samples was concentration dependent (Figures 1–4). In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. In the case of extracts from dried samples, the highest value of reducing power it showed by aqueous extract obtained by boiling of fruiting body with a value of 0.701 ± 0.003, and the methanol extract obtained at room temperature of mycelium showed 0.645 ± 0.009, both at a concentration of 100 mg GAE/L (Figures 1 and 2). For extracts of fresh samples, the highest values were obtained in water extracts of fruiting body by boiling with a value of 0.439 ± 0.011 (Figure 3) and methanolic extracts of the fruiting body and primordium both by boiling, with values of 0.269 ± 0.003 and 0.251 ± 0.005, respectively (Figure 4), both at a concentration of 500 mg GAE/L. Arbaayah and Umi (2013) reported reduced power of ethanolic extracts of mushrooms of Pleurotus genus and Schizophyllum commun. The higher reducing power (at 10 mg sample/mL) was shown for P. djamor var. djamor with an absorbance of 0.874, followed by P. djamor var. roseus (0.771), Schizophyllum commune (0.568), P. pulmonarius (0.429), and finally P. ostreatus (0.397). Shimada et al. (1992) and Arbaayah and Umi (2013) reported that the reducing power of the mushroom extracts can be due to the ability of hydrogens donation that stabilize the molecules by acceptance of hydrogen ions in the extracts. The properties of the reducing power can be an indicator of antioxidant potential of compound evaluated (Meir et al., 1995).

Bottom Line: The reducing power of all samples was concentration dependent.In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts.Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, Metropolitan Autonomous University, Campus IztapalapaMexico, Mexico; Laboratory of Biotechnology, Research Center for Biological Sciences, Autonomous University of TlaxcalaTlaxcala, Mexico.

ABSTRACT
Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported.

No MeSH data available.