Limits...
Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus

Grapevine transcripts showing modulation and plasticity during Garganega berry maturation within the four vineyards. (A) Number of genes significantly upregulated or downregulated during ripening. (B) Shared and specific gene expression modulation. (C) Heat maps of the 468 core genes represented by the coefficient of variation among the four ripening stages (left) and of the top 50 most plastic transcriptional profiles using the average expression value of three biological replicates (right).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940403&req=5

Figure 6: Grapevine transcripts showing modulation and plasticity during Garganega berry maturation within the four vineyards. (A) Number of genes significantly upregulated or downregulated during ripening. (B) Shared and specific gene expression modulation. (C) Heat maps of the 468 core genes represented by the coefficient of variation among the four ripening stages (left) and of the top 50 most plastic transcriptional profiles using the average expression value of three biological replicates (right).

Mentions: The plasticity of the ripening Garganega berry transcriptome in the four different vineyards was investigated by multiclass statistical analysis of microarrays (SAM) within each group of vineyard samples. A total of 12,931 transcripts were significantly modulated (Supplementary File 3) and, of these, 6272 scored a fold change (/FC/) ≥2 in at least one condition. This revealed that vineyard VH2 featured the highest number of modulated genes (4782) and vineyard VH1 the lowest number (1224). In vineyards AP and VP, the number of differentially modulated genes with a /FC/ ≥2 was 1808 and 1441, respectively (Supplementary File 3 and Figure 6A). Interestingly, all four vineyards were characterized by a higher number of downregulated genes than upregulated genes (Figure 6A), confirming that berry ripening predominantly involves gene suppression rather than activation (Palumbo et al., 2014).


Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

Grapevine transcripts showing modulation and plasticity during Garganega berry maturation within the four vineyards. (A) Number of genes significantly upregulated or downregulated during ripening. (B) Shared and specific gene expression modulation. (C) Heat maps of the 468 core genes represented by the coefficient of variation among the four ripening stages (left) and of the top 50 most plastic transcriptional profiles using the average expression value of three biological replicates (right).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940403&req=5

Figure 6: Grapevine transcripts showing modulation and plasticity during Garganega berry maturation within the four vineyards. (A) Number of genes significantly upregulated or downregulated during ripening. (B) Shared and specific gene expression modulation. (C) Heat maps of the 468 core genes represented by the coefficient of variation among the four ripening stages (left) and of the top 50 most plastic transcriptional profiles using the average expression value of three biological replicates (right).
Mentions: The plasticity of the ripening Garganega berry transcriptome in the four different vineyards was investigated by multiclass statistical analysis of microarrays (SAM) within each group of vineyard samples. A total of 12,931 transcripts were significantly modulated (Supplementary File 3) and, of these, 6272 scored a fold change (/FC/) ≥2 in at least one condition. This revealed that vineyard VH2 featured the highest number of modulated genes (4782) and vineyard VH1 the lowest number (1224). In vineyards AP and VP, the number of differentially modulated genes with a /FC/ ≥2 was 1808 and 1441, respectively (Supplementary File 3 and Figure 6A). Interestingly, all four vineyards were characterized by a higher number of downregulated genes than upregulated genes (Figure 6A), confirming that berry ripening predominantly involves gene suppression rather than activation (Palumbo et al., 2014).

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus